A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice

被引:10
|
作者
Nong, Qingqin [1 ]
Fang, Jiazhu [1 ]
Gong, Suning [1 ]
Du, Dingzhu [2 ]
Feng, Yan [1 ]
Qu, Xiaoying [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R China
[2] Univ Texas, Dept Comp Sci, Dallas, TX 75083 USA
基金
中国国家自然科学基金;
关键词
Submodular; Non-monotone; Algorithm; Double greedy;
D O I
10.1007/s10878-020-00558-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Maximizing non-monotone submodular functions is one of the most important problems in submodular optimization. Let B=(B1,B2, horizontal ellipsis ,Bn)is an element of Z+n be an integer vector and [B]={(x1,MIDLINE HORIZONTAL ELLIPSIS,xn)is an element of Z+n:0 <= xk <= Bk,for all 1 <= k <= n} be the set of all non-negative integer vectors not greater than B A function f:[B]-> Ris said to be weak-submodular if f(x+delta 1k)-f(x)>= f(y+delta 1k)-f(y) for any k is an element of{1,MIDLINE HORIZONTAL ELLIPSIS,n}any pair of x,y is an element of[B]such that x <= yand xk=ykand any delta is an element of Z+satisfying y+delta 1k is an element of[B] Here 1k is the vector with the kth component equal to 1 and each of the others equals to 0. In this paper we consider the problem of maximizing a non-monotone and non-negative weak-submodular function on the bounded integer lattice without any constraint. We present an randomized algorithm with an approximation guarantee 12 for the problem.
引用
收藏
页码:1208 / 1220
页数:13
相关论文
共 13 条
  • [1] A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
    Qingqin Nong
    Jiazhu Fang
    Suning Gong
    Dingzhu Du
    Yan Feng
    Xiaoying Qu
    [J]. Journal of Combinatorial Optimization, 2020, 39 : 1208 - 1220
  • [2] A fast algorithm for maximizing a non-monotone DR-submodular integer lattice function
    Nong, Qingqin
    Fang, Jiazhu
    Gong, Suning
    Feng, Yan
    Qu, Xiaoying
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 840 : 177 - 186
  • [3] Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
    Shi, Yishuo
    Lai, Xiaoyan
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 990
  • [4] Maximizing the Differences Between a Monotone DR-Submodular Function and a Linear Function on the Integer Lattice
    Zhang, Zhen-Ning
    Du, Dong-Lei
    Ma, Ran
    Wu, Dan
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (03) : 795 - 807
  • [5] Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice
    Nguyen, Bich-Ngan T.
    Pham, Phuong N. H.
    Le, Van-Vang
    Snasel, Vaclav
    [J]. MATHEMATICS, 2022, 10 (20)
  • [6] Maximizing the Sum of a Supermodular Function and a Monotone DR-submodular Function Subject to a Knapsack Constraint on the Integer Lattice
    Tan, Jingjing
    Xu, Yicheng
    Zhang, Dongmei
    Zhang, Xiaoqing
    [J]. COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 68 - 75
  • [7] A fast double greedy algorithm for non-monotone DR-submodular function maximization
    Gu, Shuyang
    Shi, Ganquan
    Wu, Weili
    Lu, Changhong
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)
  • [8] Streaming algorithm for maximizing a monotone non-submodular function underd-knapsack constraint
    Jiang, Yanjun
    Wang, Yishui
    Xu, Dachuan
    Yang, Ruiqi
    Zhang, Yong
    [J]. OPTIMIZATION LETTERS, 2020, 14 (05) : 1235 - 1248
  • [9] Online Non-monotone DR-Submodular Maximization: 1/4 Approximation Ratio and Sublinear Regret
    Feng, Junkai
    Yang, Ruiqi
    Zhang, Haibin
    Zhang, Zhenning
    [J]. COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 118 - 125
  • [10] Streaming algorithms for monotone non-submodular function maximization under a knapsack constraint on the integer lattice
    Tan, Jingjing
    Wang, Fengmin
    Ye, Weina
    Zhang, Xiaoqing
    Zhou, Yang
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 937 : 39 - 49