The Plemelj-Privalov theorem in Clifford analysis

被引:7
|
作者
Abreu Blaya, Ricardo [1 ]
Bory Reyes, Juan [2 ]
Moreno Garcia, Tania [1 ]
机构
[1] Univ Holguin, Fac Informat & Matemat, Holguin 80100, Cuba
[2] Univ Oriente, Dept Matemat, Santiago De Cuba 90500, Cuba
关键词
D O I
10.1016/j.crma.2009.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note gives geometric conditions on a surface of R-n so that the Hilbert transform oil that surface in the framework of Clifford analysis defines a bounded operator in the Holder Continuous functions classes. This result provides a generalization of the well-known theorem of Plemelj and Privalov for curves in R-2. To cite this article: R. Abreu Blaya et al., C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:223 / 226
页数:4
相关论文
共 50 条
  • [41] THE GAUSS-GREEN THEOREM IN CLIFFORD ANALYSIS AND ITS APPLICATIONS
    Luo, Weiyu
    Du, Jinyuan
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (01) : 235 - 254
  • [42] A generalization of Fueter's theorem in Dunkl-Clifford analysis
    Li, Shanshan
    Fei, Minggang
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (08) : 1161 - 1171
  • [43] Clifford's theorem for bricks
    Kozakai, Yuta
    Sakai, Arashi
    JOURNAL OF ALGEBRA, 2025, 663 : 765 - 785
  • [44] A generalized Clifford theorem of semigroups
    Ren XueMing
    Shum, K. P.
    Guo YuQi
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (04) : 1097 - 1101
  • [45] A generalized Clifford theorem of semigroups
    SHUM K.P.
    Science China(Mathematics), 2010, 53 (04) : 1097 - 1101
  • [46] A generalized Clifford theorem of semigroups
    XueMing Ren
    K. P. Shum
    YuQi Guo
    Science China Mathematics, 2010, 53 : 1097 - 1101
  • [47] On tropical Clifford's Theorem
    Facchini, Laura
    RICERCHE DI MATEMATICA, 2010, 59 (02) : 343 - 349
  • [48] Clifford's Theorem for graphs
    Coppens, Marc
    ADVANCES IN GEOMETRY, 2016, 16 (03) : 389 - 400
  • [49] SECANT SPACES AND CLIFFORD THEOREM
    COPPENS, M
    MARTENS, G
    COMPOSITIO MATHEMATICA, 1991, 78 (02) : 193 - 212