A generalized Clifford theorem of semigroups

被引:16
|
作者
Ren XueMing [1 ]
Shum, K. P. [2 ]
Guo YuQi [3 ]
机构
[1] Xian Univ Architecture & Technol, Dept Math, Xian 710055, Peoples R China
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Clifford theorem; unions of groups; superabundant semigroups; U-abundant semigroups; U-superabundant semigroups;
D O I
10.1007/s11425-009-0150-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A U-abundant semigroup S in which every (H) over tilde -class of S contains an element in the set of projections U of S is said to be a U-superabundant semigroup. This is an analogue of regular semigroups which are unions of groups and an analogue of abundant semigroups which are superabundant. In 1941, Clifford proved that a semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups. Several years later, Fountain generalized this result to the class of superabundant semigroups. In this paper, we extend their work to U-superabundant semigroups.
引用
收藏
页码:1097 / 1101
页数:5
相关论文
共 50 条
  • [1] A generalized Clifford theorem of semigroups
    SHUM K.P.
    Science China(Mathematics), 2010, 53 (04) : 1097 - 1101
  • [2] A generalized Clifford theorem of semigroups
    XueMing Ren
    K. P. Shum
    YuQi Guo
    Science China Mathematics, 2010, 53 : 1097 - 1101
  • [3] Isbell's Zigzag theorem for permutative orthodox semigroups and clifford semigroups
    Alam, Noor
    Khan, Noor Mohammad
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (08)
  • [4] A generalized central sets theorem in partial semigroups
    Ghosh, Arpita
    SEMIGROUP FORUM, 2020, 100 (01) : 169 - 179
  • [5] A generalized central sets theorem in partial semigroups
    Arpita Ghosh
    Semigroup Forum, 2020, 100 : 169 - 179
  • [6] CLIFFORD SEMIGROUPS AND MONOTONICITY
    HAYS, TE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 32 (01) : 83 - 92
  • [7] Generalized Friedland's theorem for C0-semigroups
    Cichon, Dariusz
    Jung, Il Bong
    Stochel, Jan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 752 - 757
  • [8] A Fixed Point Theorem for Generalized Lipschitzian Semigroups in Hilbert Spaces
    Najibufahmi, Muhamad
    Zulijanto, And Atok
    THAI JOURNAL OF MATHEMATICS, 2019, 17 (03): : 639 - 648
  • [9] Metrizability of Clifford topological semigroups
    Banakh, Taras
    Gutik, Oleg
    Potiatynyk, Oles
    Ravsky, Alex
    SEMIGROUP FORUM, 2012, 84 (02) : 301 - 307
  • [10] On the endomorphism monoids of Clifford semigroups
    Worawiset, Somnuek
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)