The Plemelj-Privalov theorem in Clifford analysis

被引:7
|
作者
Abreu Blaya, Ricardo [1 ]
Bory Reyes, Juan [2 ]
Moreno Garcia, Tania [1 ]
机构
[1] Univ Holguin, Fac Informat & Matemat, Holguin 80100, Cuba
[2] Univ Oriente, Dept Matemat, Santiago De Cuba 90500, Cuba
关键词
D O I
10.1016/j.crma.2009.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note gives geometric conditions on a surface of R-n so that the Hilbert transform oil that surface in the framework of Clifford analysis defines a bounded operator in the Holder Continuous functions classes. This result provides a generalization of the well-known theorem of Plemelj and Privalov for curves in R-2. To cite this article: R. Abreu Blaya et al., C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:223 / 226
页数:4
相关论文
共 50 条
  • [21] Fueter's theorem in discrete Clifford analysis
    De Ridder, Hilde
    Sommen, Frank
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (07) : 1908 - 1920
  • [22] An Extension Theorem for Biregular Functions in Clifford Analysis
    Blaya, Ricardo Abreu
    Reyes, Juan Bory
    HYPERCOMPLEX ANALYSIS, 2009, : 1 - +
  • [23] A Holomorphic Extension Theorem using Clifford Analysis
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Dixan Peña Peña
    Frank Sommen
    Complex Analysis and Operator Theory, 2011, 5 : 113 - 130
  • [24] A Holomorphic Extension Theorem using Clifford Analysis
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    Pena, Dixan Pena
    Sommen, Frank
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2011, 5 (01) : 113 - 130
  • [25] A CONVERSE TO THE LUSIN-PRIVALOV RADIAL UNIQUENESS THEOREM
    BERMAN, RD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (01) : 103 - 106
  • [26] 实Clifford分析中超正则函数的Plemelj公式
    贾美枝
    姚立
    数学的实践与认识, 2007, (06) : 142 - 148
  • [27] Generalization of a Theorem of Clifford
    Pham Ngoc Anh
    ACTA MATHEMATICA VIETNAMICA, 2016, 41 (03) : 471 - 480
  • [28] THE GAUSS–GREEN THEOREM IN CLIFFORD ANALYSIS AND ITS APPLICATIONS
    罗纬宇
    杜金元
    Acta Mathematica Scientia, 2015, (01) : 235 - 254
  • [29] ON THE CLIFFORD THEOREM FOR SURFACES
    Sun, Hao
    TOHOKU MATHEMATICAL JOURNAL, 2012, 64 (02) : 269 - 285
  • [30] Cauchy–Kovalevskaya Extension Theorem in Fractional Clifford Analysis
    N. Vieira
    Complex Analysis and Operator Theory, 2015, 9 : 1089 - 1109