Invariant measures on multimode quantum Gaussian states

被引:10
|
作者
Lupo, C. [1 ]
Mancini, S. [1 ,2 ]
De Pasquale, A. [3 ,4 ]
Facchi, P. [5 ,6 ,7 ]
Florio, G. [7 ,8 ,9 ,10 ,11 ]
Pascazio, S. [7 ,8 ,9 ]
机构
[1] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[3] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[4] Ist Nanosci CNR, I-56126 Pisa, Italy
[5] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[6] Univ Bari, MECENAS, I-70125 Bari, Italy
[7] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[8] Univ Bari, MECENAS, I-70126 Bari, Italy
[9] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[10] Museo Stor Fis, I-00184 Rome, Italy
[11] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
关键词
TYPICAL ENTANGLEMENT; COHERENT STATES; PURE STATES; ENTROPY; REPRESENTATION; INFORMATION; MECHANICS; SYSTEMS; FORMS;
D O I
10.1063/1.4768712
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768712]
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Invariant Quantum States of Quadratic Hamiltonians
    Dodonov, Viktor V.
    ENTROPY, 2021, 23 (05)
  • [42] Genuine multipartite nonlocality of permutationally invariant Gaussian states
    Xu, Buqing
    Tufarelli, Tommaso
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [43] Quantum states as probability measures
    Stulpe, W
    FOUNDATIONS OF PHYSICS LETTERS, 2001, 14 (03) : 285 - 293
  • [44] Elementary quantum gates with Gaussian states
    Podoshvedov, Sergey A.
    Kim, Jaewan
    Kim, Kisik
    QUANTUM INFORMATION PROCESSING, 2014, 13 (08) : 1723 - 1749
  • [45] Elementary quantum gates with Gaussian states
    Sergey A. Podoshvedov
    Jaewan Kim
    Kisik Kim
    Quantum Information Processing, 2014, 13 : 1723 - 1749
  • [46] Quantum steering with Gaussian states: A tutorial
    Frigerio, Massimo
    Destri, Claudio
    Olivares, Stefano
    Paris, Matteo G. A.
    PHYSICS LETTERS A, 2022, 430
  • [47] Sending quantum information with Gaussian states
    Holevo, AS
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 2, 2000, : 75 - 82
  • [48] Dissipative evolution of quantum Gaussian states
    Linowski, Tomasz
    Teretenkov, Alexander
    Rudnicki, Lukasz
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [49] WEYL MOMENTS AND QUANTUM GAUSSIAN STATES
    Bolanos-Servin, Jorge R.
    Quezada, Roberto
    Rios-Cangas, Josue I.
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 90 (03) : 357 - 376
  • [50] Quantum characterization of bipartite Gaussian states
    Buono, D.
    Nocerino, G.
    D'Auria, V.
    Porzio, A.
    Olivares, S.
    Paris, M. G. A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (06) : A110 - A118