Invariant measures on multimode quantum Gaussian states

被引:10
|
作者
Lupo, C. [1 ]
Mancini, S. [1 ,2 ]
De Pasquale, A. [3 ,4 ]
Facchi, P. [5 ,6 ,7 ]
Florio, G. [7 ,8 ,9 ,10 ,11 ]
Pascazio, S. [7 ,8 ,9 ]
机构
[1] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[3] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[4] Ist Nanosci CNR, I-56126 Pisa, Italy
[5] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[6] Univ Bari, MECENAS, I-70125 Bari, Italy
[7] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[8] Univ Bari, MECENAS, I-70126 Bari, Italy
[9] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[10] Museo Stor Fis, I-00184 Rome, Italy
[11] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
关键词
TYPICAL ENTANGLEMENT; COHERENT STATES; PURE STATES; ENTROPY; REPRESENTATION; INFORMATION; MECHANICS; SYSTEMS; FORMS;
D O I
10.1063/1.4768712
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768712]
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Quantum control with multi-dimensional Gaussian quantum invariant
    Simsek, Selwyn
    Mintert, Florian
    QUANTUM, 2021, 5
  • [22] Extremality of Gaussian quantum states
    Wolf, MM
    Giedke, G
    Cirac, JI
    PHYSICAL REVIEW LETTERS, 2006, 96 (08)
  • [23] Quantum information with Gaussian states
    Wang, Xiang-Bin
    Hiroshima, Tohya
    Tomita, Akihisa
    Hayashi, Masahito
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 448 (1-4): : 1 - 111
  • [24] Quantum entanglement with Gaussian states
    Singh, J. P.
    Singh, Devendra
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2009, 124 (08): : 831 - 847
  • [25] Curvature of Gaussian quantum states
    Miller, Harry J. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (03)
  • [26] Quantum Illumination with Gaussian States
    Tan, Si-Hui
    Erkmen, Baris I.
    Giovannetti, Vittorio
    Guha, Saikat
    Lloyd, Seth
    Maccone, Lorenzo
    Pirandola, Stefano
    Shapiro, Jeffrey H.
    PHYSICAL REVIEW LETTERS, 2008, 101 (25)
  • [27] Estimation of Gaussian quantum states
    Safranek, Dominik
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)
  • [28] Geometry of Gaussian quantum states
    Link, Valentin
    Strunz, Walter T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (27)
  • [29] Distinguishability in quantum interference with multimode squeezed states
    Shchesnovich, Valery
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [30] Quantum probabilities of composite events in quantum measurements with multimode states
    Yukalov, V. I.
    Sornette, D.
    LASER PHYSICS, 2013, 23 (10)