Invariant measures on multimode quantum Gaussian states

被引:10
|
作者
Lupo, C. [1 ]
Mancini, S. [1 ,2 ]
De Pasquale, A. [3 ,4 ]
Facchi, P. [5 ,6 ,7 ]
Florio, G. [7 ,8 ,9 ,10 ,11 ]
Pascazio, S. [7 ,8 ,9 ]
机构
[1] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[3] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[4] Ist Nanosci CNR, I-56126 Pisa, Italy
[5] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[6] Univ Bari, MECENAS, I-70125 Bari, Italy
[7] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[8] Univ Bari, MECENAS, I-70126 Bari, Italy
[9] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[10] Museo Stor Fis, I-00184 Rome, Italy
[11] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
关键词
TYPICAL ENTANGLEMENT; COHERENT STATES; PURE STATES; ENTROPY; REPRESENTATION; INFORMATION; MECHANICS; SYSTEMS; FORMS;
D O I
10.1063/1.4768712
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768712]
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Differential formalism and the thermodynamic description of multimode Gaussian equilibrium states
    Lopez-Saldivar, Julio A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 617
  • [32] Entanglement dynamics of multimode Gaussian states coupled to the same reservoir
    Xiang, Shao-Hua
    Shao, Bin
    Song, Ke-Hui
    Zou, Jian
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [33] Invariant Measures of Gaussian Type for 2D Turbulence
    Hakima Bessaih
    Benedetta Ferrario
    Journal of Statistical Physics, 2012, 149 : 259 - 283
  • [34] Invariant measures and arithmetic quantum unique ergodicity
    Lindenstrauss, Elon
    ANNALS OF MATHEMATICS, 2006, 163 (01) : 165 - 219
  • [35] THE DLR CONDITIONS FOR TRANSLATION INVARIANT GAUSSIAN MEASURES ON L' (RD)
    HOLLEY, R
    STROOCK, D
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 293 - 304
  • [36] Invariant Gaussian measures for operators on Banach spaces and linear dynamics
    Bayart, Frederic
    Grivaux, Sophie
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 : 181 - 210
  • [37] Steady states, invariant measures, and response theory
    Evans, DJ
    Searles, DJ
    PHYSICAL REVIEW E, 1995, 52 (06): : 5839 - 5848
  • [38] EFFECTS OF PARAMETRIC UNCERTAINTIES IN CASCADED OPEN QUANTUM HARMONIC OSCILLATORS AND ROBUST GENERATION OF GAUSSIAN INVARIANT STATES
    Vladimirov, Igor G.
    Petersen, Ian R.
    James, Matthew R.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (03) : 1597 - 1628
  • [39] Invariant Measures of Gaussian Type for 2D Turbulence
    Bessaih, Hakima
    Ferrario, Benedetta
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (02) : 259 - 283
  • [40] Gaussian Quantum Markov Semigroups on a One-Mode Fock Space: Irreducibility and Normal Invariant States
    Agredo, J.
    Fagnola, F.
    Poletti, D.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2021, 28 (01):