Parametric Centers for Trigonometric Abel Equations

被引:3
|
作者
Francoise, Jean-Pierre [1 ]
机构
[1] Univ Paris 06, CNRS, Lab JL Lions, UMR 7598, Paris, France
关键词
Center; Perturbation theory; Abel equations;
D O I
10.1007/s10884-008-9107-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to one-dimensional perturbative theory on R x S-1. There is a recursive formula for the successive obstructions to parametric center at any order of the perturbation parameter. The first obstruction is studied by means of complex analysis techniques. This extends to the trigonometric case what was done previously for the polynomial case (Israel J. Math. 142, 273-283, 2004).
引用
收藏
页码:777 / 786
页数:10
相关论文
共 50 条
  • [41] Some new results on Abel equations
    Yang, LJ
    Tang, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (01) : 100 - 112
  • [42] On the Center Problem for Generalized Abel Equations
    Chang Jian LIU
    Shao Qing WANG
    ActaMathematicaSinica,EnglishSeries, 2023, (12) : 2329 - 2337
  • [43] Rational solutions of Abel differential equations
    Bravo, J. L.
    Calderon, L. A.
    Fernandez, M.
    Ojeda, I
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [44] On the Center Problem for Generalized Abel Equations
    Chang Jian Liu
    Shao Qing Wang
    Acta Mathematica Sinica, English Series, 2023, 39 : 2329 - 2337
  • [45] Periodic solutions of Abel equations with jumps
    Belley, J. -M.
    Gueye, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 1106 - 1131
  • [46] THE NUMBER OF RATIONAL SOLUTIONS OF ABEL EQUATIONS
    Qian, Xinjie
    Shen, Yang
    Yang, Jiazhong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2535 - 2552
  • [47] On the integrable rational Abel differential equations
    Gine, Jaume
    Llibre, Jaume
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 33 - 39
  • [48] The parametric cubic trigonometric spline curves with factors
    Han, XL
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 1021 - 1024
  • [49] ABEL,NIELS,HENRIK AND SOLVABLE EQUATIONS
    GARDING, L
    SKAU, C
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1994, 48 (01) : 81 - 103
  • [50] ON NUMERICAL SOLUTION OF EQUATIONS OF ABEL TYPE
    FETTIS, HE
    MATHEMATICS OF COMPUTATION, 1964, 18 (87) : 491 - &