On the integrable rational Abel differential equations

被引:13
|
作者
Gine, Jaume [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
关键词
Integrability; Abel differential equation; Riccati equation; First-order linear differential equation; LIMIT-CYCLES; DARBOUX INTEGRABILITY; SYSTEMS;
D O I
10.1007/s00033-009-0013-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Cheb-Terrab and Roche (Comput Phys Commun 130(1-2):204-231, 2000) a classification of the Abel equations known as solvable in the literature was presented. In this paper, we show that all the integrable rational Abel differential equations that appear in Cheb-Terrab and Roche (Comput Phys Commun 130(1-2):204-231, 2000) and consequently in Cheb-Terrab and Roche (Eur J Appl Math 14(2):217-229, 2003) can be reduced to a Riccati differential equation or to a first-order linear differential equation through a change with a rational map. The change is given explicitly for each class. Moreover, we have found a unified way to find the rational map from the knowledge of the explicitly first integral.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 50 条
  • [1] On the integrable rational Abel differential equations
    Jaume Giné
    Jaume Llibre
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 33 - 39
  • [2] Rational solutions of Abel differential equations
    Bravo, J. L.
    Calderon, L. A.
    Fernandez, M.
    Ojeda, I
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [3] Rational limit cycles of Abel differential equations
    Luis Bravo, Jose
    Angel Calderon, Luis
    Ojeda, Ignacio
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (47) : 1 - 13
  • [4] Rational solutions of Abel trigonometric polynomial differential equations
    Valls, Claudia
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [5] Rational Recursion Operators for Integrable Differential–Difference Equations
    Sylvain Carpentier
    Alexander V. Mikhailov
    Jing Ping Wang
    [J]. Communications in Mathematical Physics, 2019, 370 : 807 - 851
  • [6] Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations
    Mancas, Stefan C.
    Rosu, Haret C.
    [J]. PHYSICS LETTERS A, 2013, 377 (21-22) : 1434 - 1438
  • [7] Integrable Abel equations and Vein's Abel equation
    Mancas, S. C.
    Rosu, H. C.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) : 1376 - 1387
  • [8] Rational Recursion Operators for Integrable Differential-Difference Equations
    Carpentier, Sylvain
    Mikhailov, Alexander V.
    Wang, Jing Ping
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (03) : 807 - 851
  • [9] THE NUMBER OF RATIONAL SOLUTIONS OF ABEL EQUATIONS
    Qian, Xinjie
    Shen, Yang
    Yang, Jiazhong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2535 - 2552
  • [10] On the rational limit cycles of Abel equations
    Liu, Changjian
    Li, Chunhui
    Wang, Xishun
    Wu, Junqiao
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 110 : 28 - 32