Rational solutions of Abel differential equations

被引:2
|
作者
Bravo, J. L. [1 ]
Calderon, L. A. [1 ]
Fernandez, M. [1 ]
Ojeda, I [1 ]
机构
[1] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
关键词
Periodic solution; Limit cycle; Abel equation; POLYNOMIAL SOLUTIONS; LIMIT-CYCLES; NUMBER;
D O I
10.1016/j.jmaa.2022.126368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the rational solutions of the Abel equation x' = A(t)x(3) + B(t)x(2) where A and B is an element of C[t]. We prove that if deg(A) is even or deg(B) > (deg(A) - 1)/2 then the equation has at most two rational solutions. For any other case, an upper bound on the number of rational solutions is obtained. Moreover, we prove that if there are more than (deg(A) + 1)/2 rational solutions then the equation admits a Darboux first integral. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Rational solutions of Abel trigonometric polynomial differential equations
    Valls, Claudia
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [2] On the integrable rational Abel differential equations
    Gine, Jaume
    Llibre, Jaume
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 33 - 39
  • [3] On the integrable rational Abel differential equations
    Jaume Giné
    Jaume Llibre
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 33 - 39
  • [4] THE NUMBER OF RATIONAL SOLUTIONS OF ABEL EQUATIONS
    Qian, Xinjie
    Shen, Yang
    Yang, Jiazhong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2535 - 2552
  • [5] Rational limit cycles of Abel differential equations
    Luis Bravo, Jose
    Angel Calderon, Luis
    Ojeda, Ignacio
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (47) : 1 - 13
  • [6] ON THE NUMBER OF NONTRIVIAL RATIONAL SOLUTIONS FOR ABEL EQUATIONS
    Qian, Xinjie
    Yang, Jiazhong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (06): : 2541 - 2554
  • [7] Periodic solutions of Abel differential equations
    Alwash, M. A. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 1161 - 1169
  • [8] RATIONAL PERIODIC SOLUTIONS ON SOME GENERALIZED ABEL EQUATIONS
    Valls, Claudia
    [J]. JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2022, 20 (02) : 177 - 189
  • [9] Computation Of Exact Solutions Of Abel Type Differential Equations
    Behloult, Djilali
    Cheng, Sui Sun
    [J]. APPLIED MATHEMATICS E-NOTES, 2020, 20 : 1 - 7
  • [10] Polynomial Solutions of Equivariant Polynomial Abel Differential Equations
    Llibre, Jaume
    Valls, Claudia
    [J]. ADVANCED NONLINEAR STUDIES, 2018, 18 (03) : 537 - 542