ON THE NUMBER OF NONTRIVIAL RATIONAL SOLUTIONS FOR ABEL EQUATIONS

被引:0
|
作者
Qian, Xinjie [1 ]
Yang, Jiazhong [2 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Abel differential equations; nontrivial rational solution; Lienard system; rational invariant curve; POLYNOMIAL SOLUTIONS; LIMIT-CYCLES;
D O I
10.11948/20220061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a systematic algorithm is provided to determine the sharp upper bound on the number of nontrivial rational solutions for the Abel differential equations dy/dx = f(m) (x) y(2) + g(n) (x)y(3) , where f(m) (x) and g(n) (x) are real polynomials of degree m and n respectively. As an application, we present a thorough study for an important case, (m, n) = (4, 9).
引用
收藏
页码:2541 / 2554
页数:14
相关论文
共 50 条