NONREGULAR GRAPHS WITH MINIMAL TOTAL IRREGULARITY

被引:8
|
作者
Abdo, Hosam [1 ]
Dimitrov, Darko [2 ]
机构
[1] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
[2] Hsch Tech & Wirtschaft Berlin, Dept Engn Sci 1, D-12459 Berlin, Germany
关键词
total irregularity; extremal graphs;
D O I
10.1017/S0004972715000271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The total irregularity of a simple undirected graph G is defined as irrt(G) = 1/2 Sigma(u,v)is an element of V(G) vertical bar d(G)(u) - d(G)(v)vertical bar, where dG(u) denotes the degree of a vertex u is an element of V(G). Obviously, irr(t)(G) = 0 if and only if G is regular. Here, we characterise the nonregular graphs with minimal total irregularity and thereby resolve the recent conjecture by Zhu et al. ['The minimal total irregularity of graphs', Preprint, 2014, arXiv: 1404.0931v1] about the lower bound on the minimal total irregularity of nonregular connected graphs. We show that the conjectured lower bound of 2n-4 is attained only if nonregular connected graphs of even order are considered, while the sharp lower bound of n-1 is attained by graphs of odd order. We also characterise the nonregular graphs with the second and the third smallest total irregularity.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] The total edge irregularity strength of hexagonal grid graphs
    Du, Julia Q. D.
    Wang, Ziqian
    Yuan, Liping
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2024, 67 (02): : 157 - 177
  • [42] TOTAL EDGE IRREGULARITY STRENGTH FOR THREE CLASSES OF GRAPHS
    Kathiresan, K. M.
    Ramalakshmi, R.
    [J]. UTILITAS MATHEMATICA, 2017, 102 : 321 - 329
  • [43] Computing the total irregularity strength of wheel related graphs
    Ibrahim, M.
    Asif, M.
    Ahmad, A.
    Siddiqui, M. K.
    [J]. UTILITAS MATHEMATICA, 2018, 108 : 321 - 338
  • [44] TOTAL VERTEX IRREGULARITY STRENGTH OF CONVEX POLYTOPE GRAPHS
    Al-Mushayt, O.
    Arshad, A.
    Siddiqui, M. K.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2013, 82 (01): : 29 - 37
  • [45] On Total Vertex Irregularity Strength of Hexagonal Cluster Graphs
    Hinding, Nurdin
    Kim, Hye Kyung
    Sunusi, Nurtiti
    Mise, Riskawati
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2021, 2021
  • [46] TOTAL EDGE IRREGULARITY STRENGTH OF SOME FAMILIES OF GRAPHS
    Jeyanthi, P.
    Sudha, A.
    [J]. UTILITAS MATHEMATICA, 2018, 109 : 139 - 153
  • [47] Study on Total Irregularity in Totally Segregated ∞ Bicyclic Graphs
    Jorry, T. F.
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 931 - 940
  • [48] On The Total Edge Irregularity Strength of Some Copies of Books Graphs
    Ramdani, Rismawati
    Salman, A. N. M.
    Assiyatun, Hilda
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS), 2019, 1245
  • [49] Maximum Total Irregularity of Totally Segregated Extended Bicyclic Graphs
    Jorry, T. F.
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (03): : 877 - 892
  • [50] Total irregularity strength of cycle related graphs with pendent edges
    Ibrahim, M.
    Siddiqui, M. K.
    Shabir, S.
    Nadeem, M.
    [J]. ARS COMBINATORIA, 2019, 144 : 309 - 322