The total edge irregularity strength of hexagonal grid graphs

被引:0
|
作者
Du, Julia Q. D. [1 ]
Wang, Ziqian [1 ]
Yuan, Liping [1 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Hebei Key Lab Computat Math & Applicat, Hebei Int Joint Res Ctr Math & Interdisciplinary S, Shijiazhuang 050024, Peoples R China
关键词
Graph labelings; edge irregular total labelings; the total edge irregularity strength; hexagonal grid graphs; LABELINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G = (V, E), a labeling partial derivative : V boolean OR E -> {1,2, . . . , k} is called an edge irregular total k-labeling of G if the weights of any two different edges are distinct, where the weight of the edge xy under partial derivative is defined to be wt(xy) = partial derivative(x) + partial derivative(xy) + partial derivative(y). The total edge irregularity strength tes(G) of G is the minimum k for which G has an edge irregular total k-labeling. Al-Mushayt et al. "prove" that tes(H-n(m)) =l3mn+2(m+n)+13m for the hexagonal grid graph H-n(m), but the labeling they constructed is actually not a total [3mn+2(m+n)+1/3]-labeling. In this paper, we first describe a correctedge irregular total [3mn+2(m+n)+1/3]-labeling of H-n(m) for any m, n >= 1, and so show that tes(H-n(m)) = [3mn+2(m+n)+1/3]. Moreover, we determine the exact value of the total edge irregularity strength for a more general hexagonal grid graph H-n(m1,m2,...,mn) by giving an edge irregular total tes(H-n(m1,m2,...,mn))-labeling, where H-n(m1,m2,...,mn) consists of ncolumns of hexagons and hasmihexagons in the i-th column, n >= 2, and m(1), . . . , m(n )>= 1.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 50 条
  • [1] On the total edge irregularity strength of hexagonal grid graphs
    Al-Mushayt, O.
    Ahmad, Ali
    Siddiqui, M. K.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 263 - 271
  • [2] On Edge H-Irregularity Strength of Hexagonal and Octagonal Grid Graphs
    Ibrahim, Muhammad
    Gulzar, Ana
    Fazil, Muhammad
    Naeem Azhar, Muhammad
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [3] On the edge irregularity strength of grid graphs
    Tarawneh, I.
    Hasni, R.
    Ahmad, A.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 414 - 418
  • [4] Total edge irregularity strength of hexagonal networks
    Quadras, Jasintha
    Teresa Arockiamary, S.
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 131 - 138
  • [5] On the total edge irregularity strength of zigzag graphs
    Ahmad, Ali
    Siddiqui, Muhammad Kamran
    Afzal, Deeba
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 141 - 149
  • [6] Total edge irregularity strength of accordion graphs
    Siddiqui, Muhammad Kamran
    Afzal, Deeba
    Faisal, Muhammad Ramzan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 534 - 544
  • [7] Total edge irregularity strength of accordion graphs
    Muhammad Kamran Siddiqui
    Deeba Afzal
    Muhammad Ramzan Faisal
    [J]. Journal of Combinatorial Optimization, 2017, 34 : 534 - 544
  • [8] Total edge irregularity strength of large graphs
    Pfender, Florian
    [J]. DISCRETE MATHEMATICS, 2012, 312 (02) : 229 - 237
  • [9] On Total Vertex Irregularity Strength of Hexagonal Cluster Graphs
    Hinding, Nurdin
    Kim, Hye Kyung
    Sunusi, Nurtiti
    Mise, Riskawati
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2021, 2021
  • [10] On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
    Susanti, Yeni
    Puspitasari, Yulia Indah
    Khotimah, Husnul
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (01): : 1 - 13