The total edge irregularity strength of hexagonal grid graphs

被引:0
|
作者
Du, Julia Q. D. [1 ]
Wang, Ziqian [1 ]
Yuan, Liping [1 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Hebei Key Lab Computat Math & Applicat, Hebei Int Joint Res Ctr Math & Interdisciplinary S, Shijiazhuang 050024, Peoples R China
关键词
Graph labelings; edge irregular total labelings; the total edge irregularity strength; hexagonal grid graphs; LABELINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G = (V, E), a labeling partial derivative : V boolean OR E -> {1,2, . . . , k} is called an edge irregular total k-labeling of G if the weights of any two different edges are distinct, where the weight of the edge xy under partial derivative is defined to be wt(xy) = partial derivative(x) + partial derivative(xy) + partial derivative(y). The total edge irregularity strength tes(G) of G is the minimum k for which G has an edge irregular total k-labeling. Al-Mushayt et al. "prove" that tes(H-n(m)) =l3mn+2(m+n)+13m for the hexagonal grid graph H-n(m), but the labeling they constructed is actually not a total [3mn+2(m+n)+1/3]-labeling. In this paper, we first describe a correctedge irregular total [3mn+2(m+n)+1/3]-labeling of H-n(m) for any m, n >= 1, and so show that tes(H-n(m)) = [3mn+2(m+n)+1/3]. Moreover, we determine the exact value of the total edge irregularity strength for a more general hexagonal grid graph H-n(m1,m2,...,mn) by giving an edge irregular total tes(H-n(m1,m2,...,mn))-labeling, where H-n(m1,m2,...,mn) consists of ncolumns of hexagons and hasmihexagons in the i-th column, n >= 2, and m(1), . . . , m(n )>= 1.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 50 条
  • [41] On total edge irregularity strength of the grids
    Miskuf, Jozef
    Jendrol, Stanislav
    [J]. GRAPHS '04, 2007, 36 : 147 - 151
  • [42] Computing total edge irregularity strength for heptagonal snake graph and related graphs
    F. Salama
    [J]. Soft Computing, 2022, 26 : 155 - 164
  • [43] Computing the total edge irregularity strength for quintet snake graph and related graphs
    Salama, F.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2491 - 2504
  • [44] ON TOTAL EDGE IRREGULARITY STRENGTH OF GRAPH
    Packiam, K. Muthu Guru
    Manimaran, T.
    Thuraiswamy, A.
    [J]. ARS COMBINATORIA, 2016, 129 : 173 - 183
  • [45] ON EDGE IRREGULARITY STRENGTH OF LADDER RELATED GRAPHS
    Salma, Umme
    Nagesh, H. M.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02): : 696 - 702
  • [46] Note on the group edge irregularity strength of graphs
    Anholcer, Marcin
    Cichacz, Sylwia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 237 - 241
  • [47] Total Face Irregularity Strength of Certain Graphs
    Emilet D.A.
    Paul D.
    Jayagopal R.
    Arockiaraj M.
    [J]. Mathematical Problems in Engineering, 2024, 2024
  • [48] Modular total vertex irregularity strength of graphs
    Ali, Gohar
    Baca, Martin
    Lascsakova, Marcela
    Semanicova-Fenovcikova, Andrea
    ALoqaily, Ahmad
    Mlaiki, Nabil
    [J]. AIMS MATHEMATICS, 2023, 8 (04): : 7662 - 7671
  • [49] TOTAL VERTEX IRREGULARITY STRENGTH OF INTERVAL GRAPHS
    Rana, Akul
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 96 - 102
  • [50] Total Vertex Irregularity Strength of Dense Graphs
    Majerski, P.
    Przybylo, J.
    [J]. JOURNAL OF GRAPH THEORY, 2014, 76 (01) : 34 - 41