The total edge irregularity strength of hexagonal grid graphs

被引:0
|
作者
Du, Julia Q. D. [1 ]
Wang, Ziqian [1 ]
Yuan, Liping [1 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Hebei Key Lab Computat Math & Applicat, Hebei Int Joint Res Ctr Math & Interdisciplinary S, Shijiazhuang 050024, Peoples R China
关键词
Graph labelings; edge irregular total labelings; the total edge irregularity strength; hexagonal grid graphs; LABELINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G = (V, E), a labeling partial derivative : V boolean OR E -> {1,2, . . . , k} is called an edge irregular total k-labeling of G if the weights of any two different edges are distinct, where the weight of the edge xy under partial derivative is defined to be wt(xy) = partial derivative(x) + partial derivative(xy) + partial derivative(y). The total edge irregularity strength tes(G) of G is the minimum k for which G has an edge irregular total k-labeling. Al-Mushayt et al. "prove" that tes(H-n(m)) =l3mn+2(m+n)+13m for the hexagonal grid graph H-n(m), but the labeling they constructed is actually not a total [3mn+2(m+n)+1/3]-labeling. In this paper, we first describe a correctedge irregular total [3mn+2(m+n)+1/3]-labeling of H-n(m) for any m, n >= 1, and so show that tes(H-n(m)) = [3mn+2(m+n)+1/3]. Moreover, we determine the exact value of the total edge irregularity strength for a more general hexagonal grid graph H-n(m1,m2,...,mn) by giving an edge irregular total tes(H-n(m1,m2,...,mn))-labeling, where H-n(m1,m2,...,mn) consists of ncolumns of hexagons and hasmihexagons in the i-th column, n >= 2, and m(1), . . . , m(n )>= 1.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 50 条
  • [21] Further Results on (a, d)-total Edge Irregularity Strength of Graphs
    Muthugurupackiam, K.
    Pandiaraj, P.
    Gurusamy, R.
    Muthuselvam, I.
    [J]. BAGHDAD SCIENCE JOURNAL, 2023, 20 (06) : 2498 - 2507
  • [22] Total edge irregularity strength of ladder-related graphs
    Ratnasari, Lucia
    Susanti, Yeni
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (04)
  • [23] Total Edge Irregularity Strength of the Disjoint Union of Helm Graphs
    Siddiquil, Muhammad Kamran
    Nurdin
    Baskoro, Edy Tri
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2013, 45 (02) : 163 - 171
  • [24] Total edge irregularity strength of quadruplet and quintuplet book graphs
    Ratnasari, Lucia
    Wahyuni, Sri
    Susanti, Yeni
    Palupi, Diah Junia Eksi
    [J]. 16TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA 2020), 2021, 36
  • [25] On total edge irregularity strength of centralized uniform theta graphs
    Putra, Riyan Wicaksana
    Susanti, Yeni
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) : 7 - 13
  • [26] The total H-irregularity strength of triangular ladder and grid graphs
    Nisviasari, R.
    Dafik
    Agustin, I. H.
    [J]. 2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [27] Total edge irregularity strength for special types of square snake graphs
    F. Salama
    H. Rafat
    H. Attiya
    [J]. Soft Computing, 2024, 28 : 917 - 927
  • [28] On Total Edge Irregularity Strength of Certain Classes of Extended Duplicate Graphs
    Jegan, R.
    Vijayakumar, P.
    Thirusangu, K.
    [J]. JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 634 - 647
  • [29] Total edge irregularity strength for special types of square snake graphs
    Salama, F.
    Rafat, H.
    Attiya, H.
    [J]. SOFT COMPUTING, 2023, 28 (2) : 917 - 927
  • [30] TOTAL EDGE IRREGULARITY STRENGTH OF THE CARTESIAN PRODUCT OF BIPARTITE GRAPHS AND PATHS
    Wijaya, Rachel Wulan Nirmalasari
    Ryan, Joe
    Kalinowski, Thomas
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2023, 29 (02) : 156 - 165