ON EDGE IRREGULARITY STRENGTH OF LADDER RELATED GRAPHS

被引:0
|
作者
Salma, Umme [1 ]
Nagesh, H. M. [1 ]
机构
[1] PES Univ, Dept Sci & Humanities, Bangalore, India
关键词
Irregularity strength; edge irregularity strength; ladder graphs; triangular ladder graphs; diagonal ladder graphs; CUBIC GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple graph G, a vertex labeling phi : V(G) -> {1, 2, ... , k} is called k-labeling. The weight of an edge xy in G, written w phi(xy), is the sum of the labels of end vertices x and y, i.e., w phi(xy) = phi(x) + phi(y). A vertex k-labeling is defined to be an edge irregular k-labeling of the graph G if for every two different edges e and f, w phi(e) =6 w phi(f). The minimum k for which the graph G has an edge irregular k-labeling is called the edge irregularity strength of G, written es(G). In this paper, we investigate the edge irregularity strength of ladder graph, triangular ladder graph, and diagonal ladder graph.
引用
收藏
页码:696 / 702
页数:7
相关论文
共 50 条
  • [1] Total edge irregularity strength of ladder-related graphs
    Ratnasari, Lucia
    Susanti, Yeni
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (04)
  • [2] On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
    Susanti, Yeni
    Puspitasari, Yulia Indah
    Khotimah, Husnul
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (01): : 1 - 13
  • [3] On Total Edge Irregularity Strength of Generalized Web Graphs and Related Graphs
    Indriati D.
    Widodo
    Wijayanti I.E.
    Sugeng K.A.
    Bača M.
    [J]. Mathematics in Computer Science, 2015, 9 (2) : 161 - 167
  • [4] On edge irregularity strength of graphs
    Ahmad, Ali
    Al-Mushayt, Omar Bin Saeed
    Baca, Martin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 607 - 610
  • [5] Computing the Edge Irregularity Strength of Bipartite Graphs and Wheel Related Graphs
    Ahmad, Ali
    Asim, Muhammad Ahsan
    Assiri, Basem
    Semanicova-Fenovcikova, Andrea
    [J]. FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 1 - 13
  • [6] On the edge irregularity strength of grid graphs
    Tarawneh, I.
    Hasni, R.
    Ahmad, A.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 414 - 418
  • [7] Modular edge irregularity strength of graphs
    Koam, Ali N. A.
    Ahmad, Ali
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    [J]. AIMS MATHEMATICS, 2023, 8 (01): : 1475 - 1487
  • [8] ON EDGE IRREGULARITY STRENGTH OF SOME GRAPHS
    Al-Hasanat, Bilal N.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 21 (02): : 193 - 202
  • [9] ON EDGE IRREGULARITY STRENGTH OF TOEPLITZ GRAPHS
    Ahmad, Ali
    Baca, Martin
    Nadeem, Muhammad Faisal
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 155 - 162
  • [10] Total H-irregularity strength of ladder graphs
    Hinding, Nurdin
    Vega, Elit
    Basir, Hasmawati
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2019, 1218