ON EDGE IRREGULARITY STRENGTH OF SOME GRAPHS

被引:0
|
作者
Al-Hasanat, Bilal N. [1 ]
机构
[1] Al Hussein Bin Talal Univ, Dept Math, Maan, Jordan
来源
关键词
k-labeling; irregularity strength; simple graph; complete bipartite graph; path graph; cycle graph; corona product;
D O I
10.17654/DM021020193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple, connected and undirected graph G(V, E) the vertex k-labeling is a map psi : V(G) -> {1, 2, ..., k}. This map assigns a weight for each edge in E. The weight of e = uv in G is psi(e) = psi(uv) = psi(u) + psi(v). The k-labeling map psi is called an irregular k-labeling of G if the assigned edge weights are distinct. The minimum k for which the graph G has an irregular k-labeling is called the edge irregularity strength of G, denoted by es(G). The value of es(G) has been found for some graphs, such as the complete bipartite graph K-n,K- 2, the corona product of two paths P-n circle dot P-6 and the corona product of path and cycle P-n circle dot C-3. The main aim of this paper is to generalize some of the recent results. We do it by finding the exact value of the edge irregularity strength of K-n,K- m, P-n circle dot P-m and P-n circle dot C-m.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [1] On the edge irregularity strength for some classes of plane graphs
    Tarawneh, Ibrahim
    Hasni, Roslan
    Ahmad, Ali
    Asim, Muhammad Ahsan
    [J]. AIMS MATHEMATICS, 2021, 6 (03): : 2724 - 2731
  • [2] Edge irregularity strength of some rooted product graphs
    Mehmood, Tariq
    Mahmood, H.
    Hussain, M.
    [J]. UTILITAS MATHEMATICA, 2018, 107 : 279 - 286
  • [3] TOTAL EDGE IRREGULARITY STRENGTH OF SOME FAMILIES OF GRAPHS
    Jeyanthi, P.
    Sudha, A.
    [J]. UTILITAS MATHEMATICA, 2018, 109 : 139 - 153
  • [4] On edge irregularity strength of graphs
    Ahmad, Ali
    Al-Mushayt, Omar Bin Saeed
    Baca, Martin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 607 - 610
  • [5] On The Total Edge Irregularity Strength of Some Copies of Books Graphs
    Ramdani, Rismawati
    Salman, A. N. M.
    Assiyatun, Hilda
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS), 2019, 1245
  • [6] On the edge irregularity strength of grid graphs
    Tarawneh, I.
    Hasni, R.
    Ahmad, A.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 414 - 418
  • [7] Modular edge irregularity strength of graphs
    Koam, Ali N. A.
    Ahmad, Ali
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    [J]. AIMS MATHEMATICS, 2023, 8 (01): : 1475 - 1487
  • [8] ON EDGE IRREGULARITY STRENGTH OF TOEPLITZ GRAPHS
    Ahmad, Ali
    Baca, Martin
    Nadeem, Muhammad Faisal
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 155 - 162
  • [9] EDGE IRREGULARITY STRENGTH OF SOME RELATED GRAPHS TO Tp-TREE
    Lourdusamy, A.
    Beaula, F. Joy
    Patrick, F.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (02): : 233 - 248
  • [10] TOTAL ABSOLUTE DIFFERENCE EDGE IRREGULARITY STRENGTH OF SOME FAMILIES OF GRAPHS
    Lourdusamy, A.
    Beaula, F. J.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (03): : 1005 - 1012