Total irregularity strength of cycle related graphs with pendent edges

被引:0
|
作者
Ibrahim, M. [1 ]
Siddiqui, M. K. [2 ]
Shabir, S. [3 ]
Nadeem, M. [3 ]
机构
[1] Bahauddin Zakariya Univ Multan, Ctr Adv Studies Pure & Appl Math, Multan, Pakistan
[2] Comsats Inst Informat Technol, Dept Math, Sahiwal, Pakistan
[3] Natl Coll Business Adm & Econ, Multan Campus, Multan, Pakistan
关键词
total edge irregularity strength; total vertex irregularity strength; total irregularity strength; convex polytopes with pendent edges; TOTAL LABELINGS; STRONG PRODUCT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph. A total labeling psi : V boolean OR E -> {1, 2, ... , k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) not equal wt(v), and every two distinct edges u(1)u(2) and v(1)v(2) in E(G) satisfy wt(u(1)u(2)) not equal wt(v(1)v(2)), where wt(u) = psi(u) + Sigma(uv is an element of E(G)) psi(uv) and wt(u(1)u(2)) = psi(u1) + psi(u(1)u(2)) + psi(u(2)). The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G). In this paper, we determine the exact value of the total irregularity strength of cycle related graphs (convex polytopes) with pendent edges.
引用
收藏
页码:309 / 322
页数:14
相关论文
共 50 条
  • [1] On irregularity strength of convex polytope graphs with certain pendent edges added
    Siddiqui, Muhammad Kamran
    ARS COMBINATORIA, 2016, 129 : 199 - 210
  • [2] On the total irregularity strength of wheel related graphs
    Jeyanthi, P.
    Sudha, A.
    UTILITAS MATHEMATICA, 2019, 110 : 131 - 144
  • [3] On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
    Susanti, Yeni
    Puspitasari, Yulia Indah
    Khotimah, Husnul
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (01): : 1 - 13
  • [4] Total vertex irregularity strength of wheel related graphs
    Ahmad, Ali
    Awan, K. M.
    Javaid, Imran
    Slamin
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 147 - 156
  • [5] Computing the total irregularity strength of wheel related graphs
    Ibrahim, M.
    Asif, M.
    Ahmad, A.
    Siddiqui, M. K.
    UTILITAS MATHEMATICA, 2018, 108 : 321 - 338
  • [6] On Total Edge Irregularity Strength of Generalized Web Graphs and Related Graphs
    Indriati D.
    Widodo
    Wijayanti I.E.
    Sugeng K.A.
    Bača M.
    Mathematics in Computer Science, 2015, 9 (2) : 161 - 167
  • [7] On Total Irregularity Strength of Double-Star and Related Graphs
    Indriati, Diari
    Widodo
    Wijayanti, Indah Emilia
    Sugeng, Kiki Ariyanti
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 118 - 123
  • [8] Total edge irregularity strength of ladder-related graphs
    Ratnasari, Lucia
    Susanti, Yeni
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (04)
  • [9] The total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges
    Indriati, Diari
    Widodo
    Wijayanti, Indah E.
    Sugeng, Kiki A.
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 14 - 26
  • [10] On The Total Irregularity Strength of Regular Graphs
    Ramdani, Rismawati
    Salman, A. N. M.
    Assiyatun, Hilda
    JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2015, 47 (03) : 281 - 295