On quantile estimation and Markov chain Monte Carlo convergence

被引:18
|
作者
Brooks, SP [1 ]
Roberts, GO
机构
[1] Univ Surrey, Sch Math, Guildford GU2 5XH, Surrey, England
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
关键词
convergence diagnosis; independence sampler; Markov chain Monte Carlo;
D O I
10.1093/biomet/86.3.710
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we examine the method of Raftery & Lewis (1992) for estimating the convergence of Markov chain Monte Carlo, samplers when functionals of interest are in the form of parameter quantiles. Although popular, the method is commonly mis-applied to problems where quantiles are not of primary interest. We show how the method can be misleading in this case, and that it can seriously underestimate the true length of the burn-in. We provide a number of examples, comparing the convergence rate of the chain in respect of a particular quantile with that of the true convergence rate of the original chain. In particular we show how, in the case of the independence sampler, the two convergence rates are identical if the quantile of interest is chosen to be at an extreme of an appropriately reordered state space.
引用
收藏
页码:710 / 717
页数:8
相关论文
共 50 条
  • [41] Using Noise to Speed up Markov Chain Monte Carlo Estimation
    Franzke, Brandon
    Kosko, Bart
    [J]. INNS CONFERENCE ON BIG DATA 2015 PROGRAM, 2015, 53 : 113 - 120
  • [42] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    B Mathew
    A M Bauer
    P Koistinen
    T C Reetz
    J Léon
    M J Sillanpää
    [J]. Heredity, 2012, 109 : 235 - 245
  • [43] Markov chain Monte Carlo estimation for the two-component model
    Jones, G
    [J]. TECHNOMETRICS, 2004, 46 (01) : 99 - 107
  • [44] An Improved Markov Chain Monte Carlo Scheme for Parameter Estimation Analysis
    Liu, Fang
    Pan, Hao
    Jiang, Desheng
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 702 - +
  • [45] Markov chain Monte Carlo estimation of the law of the mean of a Dirichlet process
    Guglielmi, A
    Tweedie, RL
    [J]. BERNOULLI, 2001, 7 (04) : 573 - 592
  • [46] Marginal maximum a posteriori estimation using Markov chain Monte Carlo
    Doucet, A
    Godsill, SJ
    Robert, CP
    [J]. STATISTICS AND COMPUTING, 2002, 12 (01) : 77 - 84
  • [47] Marginal maximum a posteriori estimation using Markov chain Monte Carlo
    Arnaud Doucet
    Simon J. Godsill
    Christian P. Robert
    [J]. Statistics and Computing, 2002, 12 : 77 - 84
  • [48] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    [J]. IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [49] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    Mathew, B.
    Bauer, A. M.
    Koistinen, P.
    Reetz, T. C.
    Leon, J.
    Sillanpaa, M. J.
    [J]. HEREDITY, 2012, 109 (04) : 235 - 245
  • [50] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25