Using Noise to Speed up Markov Chain Monte Carlo Estimation

被引:13
|
作者
Franzke, Brandon [1 ]
Kosko, Bart [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
关键词
Markov chain Monte Carlo (MCMC) simulation; Metropolis-Hastings simulated annealing; noise benefits; stochastic resonance; Bayesian statistics;
D O I
10.1016/j.procs.2015.07.285
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Carefully injected noise can speed the average convergence of Markov chain Monte Carlo (MCMC) simulation estimates. This includes the MCMC special cases of the Metropolis-Hastings algorithm and Gibbs sampling and simulated annealing. MCMC equates the solution to a computational problem with the equilibrium probability density of a reversible Markov chain. The algorithm must cycle through a long burn-in phase until it reaches equilibrium because the Markov samples are statistically correlated. The injected noise reduces this burn-in period. Simulations showed that optimal noise gave a 42% speed-up in finding the minimum potential energy of diatomic argon using a Lennard-Jones 12-6 potential. We prove that the Noisy MCMC algorithm brings each Markov step closer on average to equilibrium if an inequality holds between two expectations. Gaussian or Cauchy jump probabilities reduce the inequality to a simple quadratic condition.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 50 条
  • [1] Noise can speed Markov chain Monte Carlo estimation and quantum annealing
    Franzke, Brandon
    Kosko, Bart
    [J]. PHYSICAL REVIEW E, 2019, 100 (05)
  • [2] Estimation of wind speed distribution using Markov chain Monte Carlo techniques
    Pang, WK
    Forster, JJ
    Troutt, MD
    [J]. JOURNAL OF APPLIED METEOROLOGY, 2001, 40 (08): : 1476 - 1484
  • [3] ESTIMATION UNDER ADDITIVE CAUCHY-GAUSSIAN NOISE USING MARKOV CHAIN MONTE CARLO
    Chen, Yuan
    Kuruoglu, Ercan Engin
    So, Hing Cheung
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 336 - 339
  • [4] Marginal MAP estimation using Markov chain Monte Carlo
    Robert, CP
    Doucet, A
    Godsill, SJ
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1753 - 1756
  • [5] Estimation of binary Markov random fields using Markov chain Monte Carlo
    Smith, D
    Smith, M
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (01) : 207 - 227
  • [6] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [7] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [8] Markov chain Monte Carlo estimation of quantiles
    Doss, Charles R.
    Flegal, James M.
    Jones, Galin L.
    Neath, Ronald C.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2448 - 2478
  • [9] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [10] Marginal maximum a posteriori estimation using Markov chain Monte Carlo
    Doucet, A
    Godsill, SJ
    Robert, CP
    [J]. STATISTICS AND COMPUTING, 2002, 12 (01) : 77 - 84