Markov chain Monte Carlo estimation for the two-component model

被引:5
|
作者
Jones, G [1 ]
机构
[1] Massey Univ, Inst Informat Sci & Technol, Palmerston North, New Zealand
关键词
analytical chemistry; calibration; Gibbs sampler; heteroscedastic; Metropolis-Hastings algorithm;
D O I
10.1198/004017004000000158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The two-component model for measurement errors, which incorporates both additive and multiplicative disturbances into a regression model, has been found to accurately describe the observed heteroscedaseticity in analytical chemistry measurements. Estimation and inference using this model are difficult because of the presence of two unobserved errors in each observation. Markov chain Monte Carlo techniques enable exact inferences to be made for both the model parameters and unknown concentrations, but there are difficulties to overcome in achieving fast convergence to the target distribution. This article describes and illustrates an implementation of this method, and compares it with other estimation methods.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 50 条
  • [1] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [2] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [3] Markov chain Monte Carlo estimation of quantiles
    Doss, Charles R.
    Flegal, James M.
    Jones, Galin L.
    Neath, Ronald C.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2448 - 2478
  • [4] Estimation of two-dimensional class a noise model parameters by Markov chain Monte Carlo
    Jiang, Yu-Zhong
    Hu, Xiu-Lin
    Li, Wen-Lu
    Zhang, Shu-Xia
    [J]. 2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 1 - +
  • [5] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [6] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [7] Markov chain Monte Carlo estimation of quantum states
    DiGuglielmo, James
    Messenger, Chris
    Fiurasek, Jaromir
    Hage, Boris
    Samblowski, Aiko
    Schmidt, Tabea
    Schnabel, Roman
    [J]. PHYSICAL REVIEW A, 2009, 79 (03):
  • [8] Benchmark estimation for Markov chain Monte Carlo samples
    Guha, S
    MacEachern, SN
    Peruggia, M
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) : 683 - 701
  • [9] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    [J]. BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [10] Markov chain Monte Carlo estimation of a mixture item response theory model
    Cho, Sun-Joo
    Cohen, Allan S.
    Kim, Seock-Ho
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (02) : 278 - 306