Geometric Kac-Moody modularity

被引:9
|
作者
Lynker, M
Schimmrigk, R
机构
[1] Kennesaw State Univ, Kennesaw, GA 30144 USA
[2] Indiana Univ, South Bend, IN 46634 USA
关键词
varieties over finite fields; L-functions; zeta functions; arithmetic varieties; fundamental strings; conformal field theory; compactification;
D O I
10.1016/j.geomphys.2005.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown how the arithmetic structure of algebraic curves encoded in the Hasse-Weil L-function can be related to affine Kac-Moody algebras. This result is useful in relating the arithmetic geometry of Calabi-Yau varieties to the underlying exactly solvable theory. In the case of the genus three Fermat curve we identify the Hasse-Weil L-function with the Meltin transform of the twist of a number theoretic modular form derived from the string function of a non-twisted affine Lie algebra. The twist character is associated to the number field of quantum dimensions of the conformal field theory. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:843 / 863
页数:21
相关论文
共 50 条
  • [41] Varieties of affine Kac-Moody algebras
    Zaitsev, MV
    MATHEMATICAL NOTES, 1997, 62 (1-2) : 80 - 86
  • [42] ROOT MULTIPLICITIES OF KAC-MOODY ALGEBRAS
    KANG, SJ
    DUKE MATHEMATICAL JOURNAL, 1994, 74 (03) : 635 - 666
  • [43] On the convergence of Kac-Moody Eisenstein series
    Carbone, Lisa
    Garland, Howard
    Lee, Kyu-Hwan
    Liu, Dongwen
    Miller, Stephen D.
    AMERICAN JOURNAL OF MATHEMATICS, 2024, 146 (05)
  • [44] Kac-Moody algebras and controlled chaos
    Wesley, Daniel H.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (04) : F7 - F13
  • [45] KAC-MOODY SYMMETRY IN HOSOTANI MODEL
    SHIRAISHI, K
    PROGRESS OF THEORETICAL PHYSICS, 1988, 80 (04): : 601 - 606
  • [46] On the convergence of the Kac-Moody correction factor
    Chen, Yanze
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (03) : 1323 - 1342
  • [47] Triangulated categories and Kac-Moody algebras
    Peng, LG
    Xiao, J
    INVENTIONES MATHEMATICAE, 2000, 140 (03) : 563 - 603
  • [48] Classifying spaces of Kac-Moody groups
    Broto, C
    Kitchloo, N
    MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (03) : 621 - 649
  • [49] On the simplicity of some Kac-Moody Groups
    Marcuson, R
    LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (01): : 49 - 55
  • [50] Cluster ensembles and Kac-Moody groups
    Williams, Harold
    ADVANCES IN MATHEMATICS, 2013, 247 : 1 - 40