Geometric Kac-Moody modularity

被引:9
|
作者
Lynker, M
Schimmrigk, R
机构
[1] Kennesaw State Univ, Kennesaw, GA 30144 USA
[2] Indiana Univ, South Bend, IN 46634 USA
关键词
varieties over finite fields; L-functions; zeta functions; arithmetic varieties; fundamental strings; conformal field theory; compactification;
D O I
10.1016/j.geomphys.2005.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown how the arithmetic structure of algebraic curves encoded in the Hasse-Weil L-function can be related to affine Kac-Moody algebras. This result is useful in relating the arithmetic geometry of Calabi-Yau varieties to the underlying exactly solvable theory. In the case of the genus three Fermat curve we identify the Hasse-Weil L-function with the Meltin transform of the twist of a number theoretic modular form derived from the string function of a non-twisted affine Lie algebra. The twist character is associated to the number field of quantum dimensions of the conformal field theory. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:843 / 863
页数:21
相关论文
共 50 条
  • [21] Heisenberg and Kac-Moody categorification
    Brundan, Jonathan
    Savage, Alistair
    Webster, Ben
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (05):
  • [22] Kac-Moody symmetric spaces
    Freyn, Walter
    Hartnick, Tobias
    Horn, Max
    Koehl, Ralf
    MUENSTER JOURNAL OF MATHEMATICS, 2020, 13 (01): : 1 - 114
  • [23] Victor Kac and Robert Moody: their paths to Kac-Moody Lie algebras
    Berman, S
    Parshall, KH
    MATHEMATICAL INTELLIGENCER, 2002, 24 (01): : 50 - 60
  • [24] Victor kac and robert moody: their paths to kac-moody lie algebras
    Stephen Berman
    Karen Hunger Parshall
    The Mathematical Intelligencer, 2002, 24 : 50 - 60
  • [25] GENERALIZED KAC-MOODY ALGEBRAS
    BORCHERDS, R
    JOURNAL OF ALGEBRA, 1988, 115 (02) : 501 - 512
  • [26] Isomorphisms of Kac-Moody groups
    Caprace, PE
    Mühlherr, B
    INVENTIONES MATHEMATICAE, 2005, 161 (02) : 361 - 388
  • [27] Complexity measures from geometric actions onVirasoro and Kac-Moody orbits
    Erdmenger, Johanna
    Gerbershagen, Marius
    Weigel, Anna-Lena
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
  • [28] Geometric construction of crystal bases for quantum generalized Kac-Moody algebras
    Kang, Seok-Jin
    Kashiwara, Masaki
    Schiffmann, Olivier
    ADVANCES IN MATHEMATICS, 2009, 222 (03) : 996 - 1015
  • [29] Dipolarizations in Kac-Moody Algebras
    Wang, Yan
    Meng, Daoji
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 669 - 676
  • [30] Quantizations of Kac-Moody Algebras
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 99 - 127