Geometric Kac-Moody modularity

被引:9
|
作者
Lynker, M
Schimmrigk, R
机构
[1] Kennesaw State Univ, Kennesaw, GA 30144 USA
[2] Indiana Univ, South Bend, IN 46634 USA
关键词
varieties over finite fields; L-functions; zeta functions; arithmetic varieties; fundamental strings; conformal field theory; compactification;
D O I
10.1016/j.geomphys.2005.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown how the arithmetic structure of algebraic curves encoded in the Hasse-Weil L-function can be related to affine Kac-Moody algebras. This result is useful in relating the arithmetic geometry of Calabi-Yau varieties to the underlying exactly solvable theory. In the case of the genus three Fermat curve we identify the Hasse-Weil L-function with the Meltin transform of the twist of a number theoretic modular form derived from the string function of a non-twisted affine Lie algebra. The twist character is associated to the number field of quantum dimensions of the conformal field theory. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:843 / 863
页数:21
相关论文
共 50 条
  • [31] Kac-Moody groups and completions
    Capdeboscq, Inna
    Rumynin, Dmitriy
    JOURNAL OF ALGEBRA, 2020, 561 : 131 - 148
  • [32] Complexity measures from geometric actions onVirasoro and Kac-Moody orbits
    Johanna Erdmenger
    Marius Gerbershagen
    Anna-Lena Weigel
    Journal of High Energy Physics, 2020
  • [33] Construction of Kac-Moody superalgebras as minimal graded Lie superalgebras and weight multiplicities for Kac-Moody superalgebras
    Kim, JA
    Shin, DU
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (07) : 4981 - 5001
  • [34] Bounded presentations of Kac-Moody groups
    Capdeboscq, Inna
    JOURNAL OF GROUP THEORY, 2013, 16 (06) : 899 - 905
  • [35] Kac-Moody algebras and the cosmological constant
    West, Peter
    PHYSICS LETTERS B, 2020, 809
  • [36] A theory of Lorentzian Kac-Moody algebras
    Nikulin V.V.
    Journal of Mathematical Sciences, 2001, 106 (4) : 3212 - 3221
  • [37] Remarks on Virasoro and Kac-Moody algebras
    Grabowski, J
    Marmo, G
    Perelomov, A
    Simoni, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (28): : 4969 - 4984
  • [38] A TRANSLATION PRINCIPLE FOR KAC-MOODY ALGEBRAS
    NEIDHARDT, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (03) : 395 - 400
  • [39] SUBJOININGS OF AFFINE KAC-MOODY ALGEBRAS
    LENG, X
    PATERA, J
    SHARP, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3397 - 3407
  • [40] Quantum symmetric Kac-Moody pairs
    Kolb, Stefan
    ADVANCES IN MATHEMATICS, 2014, 267 : 395 - 469