Characterizing weak chaos using time series of Lyapunov exponents

被引:27
|
作者
da Silva, R. M. [1 ]
Manchein, C. [1 ]
Beims, M. W. [2 ,3 ]
Altmann, E. G. [3 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, Brazil
[2] Univ Fed Parana, Dept Fis, BR-81531980 Curitiba, Parana, Brazil
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 06期
关键词
ISOLATING INTEGRALS; HAMILTONIAN-SYSTEMS; CORRELATION DECAY; INVARIANT-SETS; STICKINESS; NUMBER;
D O I
10.1103/PhysRevE.91.062907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite-time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define regimes of ordered (stickiness), semiordered (or semichaotic), and strongly chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each regime, the transition between different regimes, and the regions in the phase space associated to them. Applying our methodology to a chain of coupled standard maps we obtain (i) that it allows for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii) that the transition probabilities between different regimes are determined by the phase-space volume associated to the corresponding regions; and (iii) the dependence of the Lyapunov exponents with the coupling strength.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Lyapunov exponents of random time series
    Tanaka, T
    Aihara, K
    Taki, M
    PHYSICAL REVIEW E, 1996, 54 (02): : 2122 - 2124
  • [2] Transient chaos measurements using finite-time Lyapunov exponents
    Stefanski, K.
    Buszko, K.
    Piecyk, K.
    CHAOS, 2010, 20 (03)
  • [3] CONTROLLING CHAOS USING MODIFIED LYAPUNOV EXPONENTS
    TAN, Y
    HE, XT
    CHEN, SG
    CHINESE PHYSICS LETTERS, 1993, 10 (06) : 321 - 324
  • [4] LYAPUNOV EXPONENTS FROM TIME-SERIES
    HOLZFUSS, J
    PARLITZ, U
    LECTURE NOTES IN MATHEMATICS, 1991, 1486 : 263 - 270
  • [5] Estimating Lyapunov exponents in biomedical time series
    Porcher, R
    Thomas, G
    PHYSICAL REVIEW E, 2001, 64 (01):
  • [6] Conditional Lyapunov exponents from time series
    Pyragas, K
    PHYSICAL REVIEW E, 1997, 56 (05): : 5183 - 5188
  • [7] Time series prediction using Lyapunov Exponents in embedding phase space
    Zhang, J
    Man, KF
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 221 - 224
  • [8] Time series prediction using Lyapunov exponents in embedding phase space
    Zhang, J
    Lam, KC
    Yan, WJ
    Gao, H
    Li, Y
    COMPUTERS & ELECTRICAL ENGINEERING, 2004, 30 (01) : 1 - 15
  • [9] Time series prediction using Lyapunov Exponents in embedding phase space
    Zhang, J
    Man, KF
    Ke, JY
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1750 - 1755
  • [10] Time series prediction using Lyapunov Exponents in embedding phase space
    Zhang, J
    Man, KF
    Ke, JY
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1744 - 1749