Transient chaos measurements using finite-time Lyapunov exponents

被引:12
|
作者
Stefanski, K. [1 ]
Buszko, K. [1 ]
Piecyk, K. [2 ]
机构
[1] Nicolaus Copernicus Univ, Dept Theoret Fdn Biomed Sci & Med Informat, Coll Med Bydgoszcz, PL-85094 Bydgoszcz, Poland
[2] Kielce Univ Technol, Fac Management & Comp Modelling, PL-27314 Kielce, Poland
关键词
chaos; Lyapunov methods; CRITICAL STATES; ATTRACTORS; WINDOWS;
D O I
10.1063/1.3483877
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of finite-time Lyapunov exponent averaged over initial conditions is used for characterizing transient chaos observed in one-dimensional maps. A model of its dependence on time is verified by comparing theoretically predicted values with those obtained numerically. Finally, the same model is used for estimating duration of transient chaos (rambling time) for some maps from the logistic family. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3483877]
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Characteristic distributions of finite-time Lyapunov exponents
    Prasad, A
    Ramaswamy, R
    PHYSICAL REVIEW E, 1999, 60 (03): : 2761 - 2766
  • [2] Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents
    Babaee, Hessam
    Farazmand, Mohamad
    Haller, George
    Sapsis, Themistoklis P.
    CHAOS, 2017, 27 (06)
  • [3] Statistics of finite-time Lyapunov exponents in the Ulam map
    Anteneodo, C
    PHYSICAL REVIEW E, 2004, 69 (01): : 6
  • [4] A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents
    Doan, T. S.
    Karrasch, D.
    Nguyen, T. Y.
    Siegmund, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5535 - 5554
  • [5] Backward Finite-Time Lyapunov Exponents in Inertial Flows
    Guenther, Tobias
    Theisel, Holger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 970 - 979
  • [6] Finite-time Lyapunov exponents for products of random transformations
    Gamba, A
    JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (1-2) : 193 - 218
  • [7] Finite-Time Lyapunov Exponents for Products of Random Transformations
    Andrea Gamba
    Journal of Statistical Physics, 2003, 112 : 193 - 218
  • [8] Finite-Time Lyapunov Exponents of Deep Neural Networks
    Storm, L.
    Linander, H.
    Bec, J.
    Gustavsson, K.
    Mehlig, B.
    PHYSICAL REVIEW LETTERS, 2024, 132 (05)
  • [9] Finite-Time Lyapunov Exponents for SPDEs with Fractional Noise
    Alexandra Blessing Neamţu
    Dirk Blömker
    Journal of Nonlinear Science, 2025, 35 (1)
  • [10] New method for computing finite-time Lyapunov exponents
    Okushima, T
    PHYSICAL REVIEW LETTERS, 2003, 91 (25)