New method for computing finite-time Lyapunov exponents

被引:18
|
作者
Okushima, T [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan
关键词
D O I
10.1103/PhysRevLett.91.254101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a novel method for computing finite-time Lyapunov exponents and vectors, via generalizing a correction given by Goldhirsch, Sulem, and Orszag [Physica (Amsterdam) 27D, 311 (1987)] into higher-order corrections. This method is a generalized LR method, which is, in contrast to the existing methods, applicable to multidimensional systems with degenerate spectra. The efficiency and accuracy is demonstrated by applying it to multidimensional dynamical systems. Without these corrections, we could not accurately detect, as an example, the coexistence of qualitatively different Lyapunov instabilities along a trajectory for a multidimensional oscillator system.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Characteristic distributions of finite-time Lyapunov exponents
    Prasad, A
    Ramaswamy, R
    PHYSICAL REVIEW E, 1999, 60 (03): : 2761 - 2766
  • [2] A NEW METHOD FOR COMPUTING LYAPUNOV EXPONENTS
    BARNA, G
    TSUDA, I
    PHYSICS LETTERS A, 1993, 175 (06) : 421 - 427
  • [3] Statistics of finite-time Lyapunov exponents in the Ulam map
    Anteneodo, C
    PHYSICAL REVIEW E, 2004, 69 (01): : 6
  • [4] A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents
    Doan, T. S.
    Karrasch, D.
    Nguyen, T. Y.
    Siegmund, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5535 - 5554
  • [5] Backward Finite-Time Lyapunov Exponents in Inertial Flows
    Guenther, Tobias
    Theisel, Holger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 970 - 979
  • [6] Finite-Time Lyapunov Exponents of Deep Neural Networks
    Storm, L.
    Linander, H.
    Bec, J.
    Gustavsson, K.
    Mehlig, B.
    PHYSICAL REVIEW LETTERS, 2024, 132 (05)
  • [7] Finite-Time Lyapunov Exponents for SPDEs with Fractional Noise
    Neamtu, Alexandra Blessing
    Bloemker, Dirk
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (01)
  • [8] Finite-Time Lyapunov Exponents for Products of Random Transformations
    Andrea Gamba
    Journal of Statistical Physics, 2003, 112 : 193 - 218
  • [9] Finite-time Lyapunov exponents for products of random transformations
    Gamba, A
    JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (1-2) : 193 - 218
  • [10] A method to calculate finite-time Lyapunov exponents for inertial particles in incompressible flows
    Garaboa-Paz, D.
    Perez-Munuzuri, V.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2015, 22 (05) : 571 - 577