Characterizing weak chaos using time series of Lyapunov exponents

被引:27
|
作者
da Silva, R. M. [1 ]
Manchein, C. [1 ]
Beims, M. W. [2 ,3 ]
Altmann, E. G. [3 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, Brazil
[2] Univ Fed Parana, Dept Fis, BR-81531980 Curitiba, Parana, Brazil
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 06期
关键词
ISOLATING INTEGRALS; HAMILTONIAN-SYSTEMS; CORRELATION DECAY; INVARIANT-SETS; STICKINESS; NUMBER;
D O I
10.1103/PhysRevE.91.062907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite-time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define regimes of ordered (stickiness), semiordered (or semichaotic), and strongly chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each regime, the transition between different regimes, and the regions in the phase space associated to them. Applying our methodology to a chain of coupled standard maps we obtain (i) that it allows for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii) that the transition probabilities between different regimes are determined by the phase-space volume associated to the corresponding regions; and (iii) the dependence of the Lyapunov exponents with the coupling strength.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] FINITE TIME BEHAVIOR OF SMALL ERRORS IN DETERMINISTIC CHAOS AND LYAPUNOV EXPONENTS
    Nicolis, C.
    Nicolis, G.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1339 - 1342
  • [22] Effect of noise on estimation of Lyapunov exponents from a time series
    Serletis, Apostolos
    Shahmoradi, Asghar
    Serletis, Demitre
    CHAOS SOLITONS & FRACTALS, 2007, 32 (02) : 883 - 887
  • [23] A fast algorithm for estimating Lyapunov exponents from time series
    Oiwa, N.N.
    Fiedler-Ferrara, N.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 246 (1-2): : 117 - 121
  • [24] Method of calculating Lyapunov exponents for time series using artificial neural networks committees
    Dmitrieva, Lyudmila A.
    Kuperin, Yuri A.
    Smetanin, Nikolai M.
    Chernykh, German A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD), 2016, : 127 - 132
  • [25] A SPECTRUM OF LYAPUNOV EXPONENTS OBTAINED FROM A CHAOTIC TIME SERIES
    严绍瑾
    彭永清
    王建中
    ActaMeteorologicaSinica, 1992, (03) : 379 - 385
  • [26] Estimation of lyapunov exponents of ECG time series - The influence of parameters
    Casaleggio, A
    Braiotta, S
    CHAOS SOLITONS & FRACTALS, 1997, 8 (10) : 1591 - 1599
  • [27] Estimation of Lyapunov exponents of ECG time series - the influence of parameters
    Casaleggio, Aldo
    Braiotta, Stefano
    Chaos, solitons and fractals, 1997, 8 (10): : 1591 - 1599
  • [28] Lyapunov exponents of time series in finite amplitude electro convection
    Chicón, R
    Pérez, AT
    Castellanos, A
    2001 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, 2001, : 520 - 523
  • [29] LYAPUNOV EXPONENTS FROM TIME-SERIES - VARIATIONS FOR AN ALGORITHM
    BARNA, G
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1995, 10 (01) : 25 - 39
  • [30] IDENTIFICATION OF TRUE AND SPURIOUS LYAPUNOV EXPONENTS FROM TIME SERIES
    Parlitz, Ulrich
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (01): : 155 - 165