Characterizing weak chaos using time series of Lyapunov exponents

被引:27
|
作者
da Silva, R. M. [1 ]
Manchein, C. [1 ]
Beims, M. W. [2 ,3 ]
Altmann, E. G. [3 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, Brazil
[2] Univ Fed Parana, Dept Fis, BR-81531980 Curitiba, Parana, Brazil
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 06期
关键词
ISOLATING INTEGRALS; HAMILTONIAN-SYSTEMS; CORRELATION DECAY; INVARIANT-SETS; STICKINESS; NUMBER;
D O I
10.1103/PhysRevE.91.062907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite-time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define regimes of ordered (stickiness), semiordered (or semichaotic), and strongly chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each regime, the transition between different regimes, and the regions in the phase space associated to them. Applying our methodology to a chain of coupled standard maps we obtain (i) that it allows for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii) that the transition probabilities between different regimes are determined by the phase-space volume associated to the corresponding regions; and (iii) the dependence of the Lyapunov exponents with the coupling strength.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A fast algorithm for estimating Lyapunov exponents from time series
    Oiwa, NN
    Fiedler-Ferrara, N
    PHYSICS LETTERS A, 1998, 246 (1-2) : 117 - 121
  • [32] Analysis of positive Lyapunov exponents from random time series
    Tanaka, T
    Aihara, K
    Taki, M
    PHYSICA D, 1998, 111 (1-4): : 42 - 50
  • [33] RUNNING LYAPUNOV EXPONENTS AND THE CONDITIONS FOR THE OCCURRENCE OF CHAOS
    VAVRIV, DM
    RYABOV, VB
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1992, 32 (09) : 1259 - 1269
  • [35] Riemannian theory of Hamiltonian chaos and Lyapunov exponents
    Casetti, L
    Clementi, C
    Pettini, M
    PHYSICAL REVIEW E, 1996, 54 (06): : 5969 - 5984
  • [36] LOCAL LYAPUNOV EXPONENTS - LOOKING CLOSELY AT CHAOS
    WOLFF, RCL
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (02): : 353 - 371
  • [37] Fuzzy Lyapunov exponents placement for chaos stabilization
    Kharabian, Behrouz
    Mirinejad, Hossein
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 445
  • [38] Characterizing two-timescale nonlinear dynamics using finite-time Lyapunov exponents and subspaces
    Mease, K. D.
    Topcu, U.
    Aykutlug, E.
    Maggie, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 : 148 - 174
  • [39] Characterizing chaos through lyapunov metrics
    Kinsner, W
    SECOND IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, PROCEEDINGS, 2003, : 189 - 201
  • [40] Characterizing chaos through Lyapunov metrics
    Kinsner, W
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2006, 36 (02): : 141 - 151