The Applicability of Ganglion Cell Complex Parameters Determined From SD-OCT Images to Detect Glaucomatous Eyes

被引:51
|
作者
Arintawati, Paramastri [1 ]
Sone, Takashi [1 ]
Akita, Tomoyuki [2 ]
Tanaka, Junko [2 ]
Kiuchi, Yoshiaki [1 ]
机构
[1] Hiroshima Univ, Dept Ophthalmol & Visual Sci, Grad Sch Biomed Sci, Hiroshima 7348551, Japan
[2] Hiroshima Univ, Dept Epidemiol Infect Dis Control & Prevent, Grad Sch Biomed Sci, Hiroshima 7348551, Japan
关键词
GCC; RNFL; preperimetric-perimetric glaucoma; OPTICAL COHERENCE TOMOGRAPHY; RETINAL NERVE-FIBER; LAYER THICKNESS; MACULAR VOLUME; VISUAL-FIELD; DOMAIN;
D O I
10.1097/IJG.0b013e318259b2e1
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose:To determine whether the thicknesses of the different parameters of the ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer can be used to differentiate eyes with glaucoma from normal eyes.Methods:Two hundred sixty-one eyes, including 68 normal eyes and 32 preperimetric glaucoma, 81 early glaucoma, and 80 advanced glaucoma were analyzed in the present study. The thicknesses of the GCC and retinal nerve fiber layer were measured using RTVue spectral-domain optical coherence tomographic (SD-OCT) images. The area under the receiver operating characteristic (AUROC) curve and sensitivities at fixed specificities were calculated for each parameter. A logistic regression analysis was used to determine the risk factors for glaucoma.Results:The 2 largest AUROC curves for all glaucoma stages were those for the GCC parameters. The global loss volume (GLV) was always one of the 2 highest values of the AUROC curve. The GLV also had the highest sensitivity at a fixed specificity to identify glaucoma at early and advanced stage. The focal loss volume (FLV) had the largest AUROC curve value and the highest sensitivity at a fixed specificity for advanced glaucoma. The logistic regression analysis showed that the GLV was one of the factors that predicted preperimetric glaucoma [odds ratio (OR)=1.74] and early glaucoma (OR=1.22), whereas the FLV was useful for detecting advanced glaucoma (OR=2.32).Conclusions:The SD-OCT-derived macular GCC parameters can be used to detect preperimetric and perimetric glaucoma. The new GCC parameters, GLV and FLV, performed well in discriminating glaucomatous eyes from normal eyes.
引用
收藏
页码:713 / 718
页数:6
相关论文
共 50 条
  • [41] Comparison of peripapillary and macular choroidal thickness and ganglion cell complex thickness in glaucomatous and healthy eyes
    Yuli Park
    Hong Kyu Kim
    Kyong Jin Cho
    International Journal of Ophthalmology, 2019, (04) : 603 - 606
  • [42] Comparison of peripapillary and macular choroidal thickness and ganglion cell complex thickness in glaucomatous and healthy eyes
    Park, Yuli
    Kim, Hong Kyu
    Cho, Kyong Jin
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2019, 12 (04) : 603 - 606
  • [43] EANet: Multiscale autoencoder based edge attention network for fluid segmentation from SD-OCT images
    Pappu, Geetha Pavani
    Tankala, Sreekar
    Talabhaktula, Krishna
    Biswal, Birendra
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (03) : 909 - 927
  • [44] Segmentation of Multiple Intra-retinal Surfaces in Volumetric SD-OCT Images of Mouse Eyes Using an Improved Iowa Reference Algorithm
    Antony, Bhavna
    Abramoff, Michael
    Jeong, Woo Jin
    Sohn, Elliott
    Garvin, Mona
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [45] Prediction of Retinal Ganglion Cell (RGC) Density from SD-OCT Thickness Measures and Correlation of RGC with Inner Plexiform Layer Thickness in Glaucoma
    Romero, Pablo
    Amini, Navid
    Miraftabi, Arezoo
    Braun, Ben
    Morales, Esteban
    Henry, Sharon
    Coleman, Anne L.
    Caprioli, Joseph
    Nouri-Mandavi, Kouros
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [46] Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes
    Pazos, Marta
    Anna Dyrda, Agnieszka
    Biarnes, Marc
    Gomez, Alicia
    Martin, Carlos
    Mora, Clara
    Fatti, Gianluca
    Anton, Alfonso
    OPHTHALMOLOGY, 2017, 124 (08) : 1218 - 1228
  • [47] Robust semantic segmentation of retinal fluids from SD-OCT images using FAM-U-Net
    Pavani, P. Geetha
    Biswal, B.
    Gandhi, Tapan K.
    Kota, Anaji Rao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [48] Automated 3-D Retinal Layer Segmentation From SD-OCT Images With Neurosensory Retinal Detachment
    Bekalo, Loza
    Niu, Sijie
    He, Xiaojun
    Li, Ping
    Okuwobi, Idowu Paul
    Yu, Chenchen
    Fan, Wen
    Yuan, Songtao
    Chen, Qiang
    IEEE ACCESS, 2019, 7 : 14894 - 14907
  • [49] Quantification of Circumpapillary Retinal Thickness from Volumetric SD-OCT Images in Normal Rats and in a Rat Model of Glaucoma
    Lozano, Diana C.
    Twa, Michael D.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [50] Structure-function relationship: Ganglion cell-inner plexiform layer thickness by SD-OCT and central visual field sensitivity
    Chapron, T.
    Marechal, M.
    El Chehab, H.
    Fenolland, J. R.
    Marill, A. F.
    Rosenberg, R.
    Delbarre, M.
    Mouinga, A.
    Renard, J. P.
    ACTA OPHTHALMOLOGICA, 2014, 92