ORTHOGONAL MCMC ALGORITHMS

被引:0
|
作者
Martino, Luca [1 ]
Elvira, Victor [2 ]
Luengo, David [3 ]
Artes-Rodriguez, Antonio [2 ]
Corander, Jukka [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] Univ Carlos III Madrid, Dept Signal Theory & Communi, Leganes 28911, Spain
[3] Univ Politecn Madrid, Dept Circuits & Syst Engn, Madrid 28031, Spain
关键词
Markov Chain Monte Carlo (MCMC); Parallel Chains; Population Monte Carlo; Bayesian inference; CHAIN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel "vertical" chains are led by random-walk proposals, whereas the "horizontal" MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice.
引用
收藏
页码:364 / 367
页数:4
相关论文
共 50 条
  • [41] Randomized approaches to accelerate MCMC algorithms for Bayesian inverse problems
    Saibaba, Arvind K.
    Prasad, Pranjal
    de Sturler, Eric
    Miller, Eric
    Kilmer, Misha E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 440
  • [42] Exploiting Symmetries to Construct Efficient MCMC Algorithms With an Application to SLAM
    Shariff, Roshan
    Gyorgy, Andras
    Szepesvari, Csaba
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 866 - 874
  • [43] Scale Resampling within MCMC Algorithms for Bilinear Inverse Problems
    Veit, Thomas
    Idier, Jerome
    Moussaoui, Said
    TRAITEMENT DU SIGNAL, 2008, 25 (04) : 329 - 343
  • [44] MCMC algorithms for two recent Bayesian limited information estimators
    Gao, CM
    Lahiri, K
    ECONOMICS LETTERS, 2000, 66 (02) : 121 - 126
  • [45] STABILITY OF ADVERSARIAL MARKOV CHAINS, WITH AN APPLICATION TO ADAPTIVE MCMC ALGORITHMS
    Craiu, Radu V.
    Gray, Lawrence
    Latuszynski, Krzysztof
    Madras, Neal
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (06): : 3592 - 3623
  • [46] Response to comment on "Phylogenetic MCMC algorithms are misleading on mixtures of trees"
    Mossel, E
    Vigoda, E
    SCIENCE, 2006, 312 (5772)
  • [47] Is partial-dimension convergence a problem for inferences from MCMC algorithms?
    Gill, Jeff
    POLITICAL ANALYSIS, 2008, 16 (02) : 153 - 178
  • [48] MCMC ALGORITHMS FOR COMPUTATIONAL UQ OF NONNEGATIVITY CONSTRAINED LINEAR INVERSE PROBLEMS
    Bardsley, Johnathan M.
    Hansen, Per Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A1269 - A1288
  • [49] Block Algorithms for Orthogonal Symplectic Factorizations
    D. Kressner
    BIT Numerical Mathematics, 2003, 43 : 775 - 790
  • [50] MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
    Cotter, S. L.
    Roberts, G. O.
    Stuart, A. M.
    White, D.
    STATISTICAL SCIENCE, 2013, 28 (03) : 424 - 446