ORTHOGONAL MCMC ALGORITHMS

被引:0
|
作者
Martino, Luca [1 ]
Elvira, Victor [2 ]
Luengo, David [3 ]
Artes-Rodriguez, Antonio [2 ]
Corander, Jukka [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] Univ Carlos III Madrid, Dept Signal Theory & Communi, Leganes 28911, Spain
[3] Univ Politecn Madrid, Dept Circuits & Syst Engn, Madrid 28031, Spain
关键词
Markov Chain Monte Carlo (MCMC); Parallel Chains; Population Monte Carlo; Bayesian inference; CHAIN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel "vertical" chains are led by random-walk proposals, whereas the "horizontal" MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice.
引用
收藏
页码:364 / 367
页数:4
相关论文
共 50 条
  • [31] On the empirical efficiency of local MCMC algorithms with pools of proposals
    Bedard, Mylene
    Mireuta, Matei
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04): : 657 - 678
  • [32] Convergence Rates of Attractive-Repulsive MCMC Algorithms
    Jiang, Yu Hang
    Liu, Tong
    Lou, Zhiya
    Rosenthal, Jeffrey S.
    Shangguan, Shanshan
    Wang, Fe
    Wu, Zixuan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (03) : 2029 - 2054
  • [33] Convergence Rates of Attractive-Repulsive MCMC Algorithms
    Yu Hang Jiang
    Tong Liu
    Zhiya Lou
    Jeffrey S. Rosenthal
    Shanshan Shangguan
    Fei Wang
    Zixuan Wu
    Methodology and Computing in Applied Probability, 2022, 24 : 2029 - 2054
  • [34] Annealed Importance Sampling Reversible Jump MCMC Algorithms
    Karagiannis, Georgios
    Andrieu, Christophe
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 623 - 648
  • [35] Limit theorems for some adaptive MCMC algorithms with subgeometric kernels
    Atchade, Yves
    Fort, Gersende
    BERNOULLI, 2010, 16 (01) : 116 - 154
  • [36] Maximum Likelihood Estimators on MCMC Sampling Algorithms for Decision Making
    Karras, Christos
    Karras, Aristeidis
    Avlonitis, Markos
    Giannoukou, Ioanna
    Sioutas, Spyros
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2022, 652 : 345 - 356
  • [37] Genetic algorithms for orthogonal designs
    Cousineau, Jason
    Kotsireas, Ilias S.
    Koukouvinos, Christos
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 263 - 272
  • [38] Convergence controls for MCMC algorithms, with applications to hidden Markov chains
    Robert, CP
    Rydén, T
    Titterington, DM
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (04) : 327 - 355
  • [39] Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors
    Choi, Hee Min
    Hobert, James P.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 : 32 - 40
  • [40] MCMC ALGORITHMS FOR SUPERVISED AND UNSUPERVISED LINEAR UNMIXING OF HYPERSPECTRAL IMAGES
    Dobigeon, N.
    Moussaoui, S.
    Coulon, M.
    Tourneret, J-Y
    Hero, A. O.
    NEW CONCEPTS IN IMAGING: OPTICAL AND STATISTICAL MODELS, 2013, 59 : 381 - +