ORTHOGONAL MCMC ALGORITHMS

被引:0
|
作者
Martino, Luca [1 ]
Elvira, Victor [2 ]
Luengo, David [3 ]
Artes-Rodriguez, Antonio [2 ]
Corander, Jukka [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] Univ Carlos III Madrid, Dept Signal Theory & Communi, Leganes 28911, Spain
[3] Univ Politecn Madrid, Dept Circuits & Syst Engn, Madrid 28031, Spain
关键词
Markov Chain Monte Carlo (MCMC); Parallel Chains; Population Monte Carlo; Bayesian inference; CHAIN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel "vertical" chains are led by random-walk proposals, whereas the "horizontal" MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice.
引用
收藏
页码:364 / 367
页数:4
相关论文
共 50 条
  • [21] Scalable approximate MCMC algorithms for the horseshoe prior
    Johndrow, James
    Orenstein, Paulo
    Bhattacharya, Anirban
    Journal of Machine Learning Research, 2020, 21
  • [22] Optimal scaling for partially updating MCMC algorithms
    Neal, Peter
    Roberts, Gareth
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (02): : 475 - 515
  • [23] Phylogenetic MCMC algorithms are misleading on mixtures of trees
    Mossel, E
    Vigoda, E
    SCIENCE, 2005, 309 (5744) : 2207 - 2209
  • [24] ORTHOGONAL ROTATION ALGORITHMS
    JENNRICH, RJ
    PSYCHOMETRIKA, 1970, 35 (02) : 229 - &
  • [25] Reparameterisation issues in mixture modelling and their bearing on MCMC algorithms
    Robert, CP
    Mengersen, KL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 29 (03) : 325 - 343
  • [26] A review of multiple try MCMC algorithms for signal processing
    Martino, Luca
    DIGITAL SIGNAL PROCESSING, 2018, 75 : 134 - 152
  • [27] An approach to diagnosing total variation convergence of MCMC algorithms
    Brooks, SP
    Dellaportas, P
    Roberts, GO
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (03) : 251 - 265
  • [28] AN AUXILIARY VARIABLE METHOD FOR LANGEVIN BASED MCMC ALGORITHMS
    Marnissi, Yosra
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    Benazza-Benyahia, Amel
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [29] MCMC Algorithms at the Service of Exo-planet Hunters
    Sosnowska, Danuta
    Segransan, Damien
    Diaz, Rodrigo
    Buchschacher, Nicolas
    Alesina, Fabien
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVI, 2019, 521 : 406 - 409
  • [30] Comment on "Phylogenetic MCMC algorithms are misleading on mixtures of trees"
    Ronquist, F
    Larget, B
    Huelsenbeck, JP
    Kadane, JB
    Simon, D
    van der Mark, P
    SCIENCE, 2006, 312 (5772)