ORTHOGONAL MCMC ALGORITHMS

被引:0
|
作者
Martino, Luca [1 ]
Elvira, Victor [2 ]
Luengo, David [3 ]
Artes-Rodriguez, Antonio [2 ]
Corander, Jukka [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] Univ Carlos III Madrid, Dept Signal Theory & Communi, Leganes 28911, Spain
[3] Univ Politecn Madrid, Dept Circuits & Syst Engn, Madrid 28031, Spain
关键词
Markov Chain Monte Carlo (MCMC); Parallel Chains; Population Monte Carlo; Bayesian inference; CHAIN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel "vertical" chains are led by random-walk proposals, whereas the "horizontal" MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice.
引用
收藏
页码:364 / 367
页数:4
相关论文
共 50 条
  • [1] Accelerating MCMC algorithms
    Robert, Christian P.
    Elvira, Victor
    Tawn, Nick
    Wu, Changye
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (05)
  • [2] Mixing of MCMC algorithms
    Holden, Lars
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (12) : 2261 - 2279
  • [3] On the efficiency of adaptive MCMC algorithms
    Andrieu, Christophe
    Atchade, Yves F.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 336 - 349
  • [4] MCMC algorithms for Subset Simulation
    Papaioannou, Iason
    Betz, Wolfgang
    Zwirglmaier, Kilian
    Straub, Daniel
    PROBABILISTIC ENGINEERING MECHANICS, 2015, 41 : 89 - 103
  • [5] Nested Adaptation of MCMC Algorithms
    Dao Nguyen
    de Valpine, Perry
    Atchade, Yves
    Turek, Daniel
    Michaud, Nicholas
    Paciorek, Christopher
    BAYESIAN ANALYSIS, 2020, 15 (04): : 1323 - 1343
  • [6] Orthogonal parallel MCMC methods for sampling and optimization
    Martino, L.
    Elvira, V.
    Luengo, D.
    Corander, J.
    Louzada, F.
    DIGITAL SIGNAL PROCESSING, 2016, 58 : 64 - 84
  • [7] Adaptive independent sticky MCMC algorithms
    Martino, Luca
    Casarin, Roberto
    Leisen, Fabrizio
    Luengo, David
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2018,
  • [8] Ergodicity of Combocontinuous Adaptive MCMC Algorithms
    Rosenthal, Jeffrey S.
    Yang, Jinyoung
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (02) : 535 - 551
  • [9] Ergodicity of Combocontinuous Adaptive MCMC Algorithms
    Jeffrey S. Rosenthal
    Jinyoung Yang
    Methodology and Computing in Applied Probability, 2018, 20 : 535 - 551