Exact traveling waves for the Fisher's equation with nonlinear diffusion

被引:4
|
作者
Alzaleq, Lewa' [1 ]
Manoranjan, Valipuram [1 ]
机构
[1] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2020年 / 135卷 / 08期
关键词
POPULATION-GENETICS; STRESS;
D O I
10.1140/epjp/s13360-020-00667-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Fisher's equation is studied with three different forms of nonlinear diffusion. When studying population problems, various forms of nonlinear diffusion can capture the effects of crowding or aggregation processes. Exact solutions for such nonlinear problems can be extremely useful to practitioners in the field. The Riccati-Bernoulli sub-ODE method is employed to obtain the exact traveling wave solutions for our nonlinear diffusion equation. The solutions that we find are new and to our knowledge and have not been reported in the literature.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Nonlinear flexural wave equation and exact traveling solutions in beams
    Liu, Zhi-fang
    Wang, Tie-feng
    Zhang, Shan-yuan
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 637 - 643
  • [42] Exact traveling wave solutions for nonlinear elastic rod equation
    Kabir, M. M.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (03) : 390 - 397
  • [44] Exact solution for the generalized Telegraph Fisher's equation
    Abdusalam, H. A.
    Fahmy, E. S.
    CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1550 - 1556
  • [45] On the integrability and exact solutions of the nonlinear diffusion equation with a nonlinear source
    Vijayakumar, K
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1998, 39 : 513 - 527
  • [46] Nonlinear diffusion equation and nonlinear external force: Exact solution
    Assis, P. C., Jr.
    da Silva, P. C.
    da Silva, L. R.
    Lenzi, E. K.
    Lenzi, M. K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [47] Rapid traveling waves in the nonlocal Fisher equation connect two unstable states
    Alfaro, Matthieu
    Coville, Jerome
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2095 - 2099
  • [48] Doubly nonlocal Fisher-KPP equation: Speeds and uniqueness of traveling waves
    Finkelshtein, Dmitri
    Kondratiev, Yuri
    Tkachov, Pasha
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 94 - 122
  • [49] Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma-Tasso-Olver equation
    Ali, Muhammad Nasir
    Husnine, Syed Muhammad
    Saha, Asit
    Bhowmik, Samir Kumar
    Dhawan, Sharanjeet
    Ak, Turgut
    NONLINEAR DYNAMICS, 2018, 94 (03) : 1791 - 1801
  • [50] Exact traveling waves for the Klein–Gordon Equation with different logarithmic nonlinearities
    Lewa’ Alzaleq
    Valipuram Manoranjan
    The European Physical Journal Plus, 136