Exact traveling waves for the Fisher's equation with nonlinear diffusion

被引:4
|
作者
Alzaleq, Lewa' [1 ]
Manoranjan, Valipuram [1 ]
机构
[1] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2020年 / 135卷 / 08期
关键词
POPULATION-GENETICS; STRESS;
D O I
10.1140/epjp/s13360-020-00667-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Fisher's equation is studied with three different forms of nonlinear diffusion. When studying population problems, various forms of nonlinear diffusion can capture the effects of crowding or aggregation processes. Exact solutions for such nonlinear problems can be extremely useful to practitioners in the field. The Riccati-Bernoulli sub-ODE method is employed to obtain the exact traveling wave solutions for our nonlinear diffusion equation. The solutions that we find are new and to our knowledge and have not been reported in the literature.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] EXACT TRAVELING-WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATION OF SURFACE-WAVES IN A CONVECTING FLUID
    PORUBOV, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (17): : L797 - L800
  • [32] Exact solitary waves of a nonlinear network equation
    Zhang, W
    Huang, YZ
    Xiao, Y
    PHYSICAL REVIEW E, 1998, 57 (06): : 7358 - 7361
  • [33] Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma–Tasso–Olver equation
    Muhammad Nasir Ali
    Syed Muhammad Husnine
    Asit Saha
    Samir Kumar Bhowmik
    Sharanjeet Dhawan
    Turgut Ak
    Nonlinear Dynamics, 2018, 94 : 1791 - 1801
  • [34] Traveling waves for a boundary reaction-diffusion equation
    Caffarelli, L.
    Mellet, A.
    Sire, Y.
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 433 - 457
  • [35] On the Fisher-KPP equation with fast nonlinear diffusion
    King, JR
    McCabe, PM
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2038): : 2529 - 2546
  • [36] THE FISHER-KPP EQUATION WITH NONLINEAR FRACTIONAL DIFFUSION
    Stan, Diana
    Luis Vazquez, Juan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3241 - 3276
  • [37] Structure of an exact solution to a nonlinear diffusion equation
    Yu. I. Babenko
    E. V. Ivanov
    Theoretical Foundations of Chemical Engineering, 2011, 45 : 299 - 303
  • [38] Nonlinear fractional diffusion equation: Exact results
    Lenzi, EK
    Mendes, RS
    Fa, KS
    Moraes, LS
    da Silva, LR
    Lucena, LS
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [39] Structure of an exact solution to a nonlinear diffusion equation
    Babenko, Yu. I.
    Ivanov, E. V.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2011, 45 (03) : 299 - 303
  • [40] EXACT-SOLUTIONS TO A NONLINEAR DIFFUSION EQUATION
    KING, JR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (14): : 3213 - 3216