Exact traveling waves for the Fisher's equation with nonlinear diffusion

被引:4
|
作者
Alzaleq, Lewa' [1 ]
Manoranjan, Valipuram [1 ]
机构
[1] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2020年 / 135卷 / 08期
关键词
POPULATION-GENETICS; STRESS;
D O I
10.1140/epjp/s13360-020-00667-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Fisher's equation is studied with three different forms of nonlinear diffusion. When studying population problems, various forms of nonlinear diffusion can capture the effects of crowding or aggregation processes. Exact solutions for such nonlinear problems can be extremely useful to practitioners in the field. The Riccati-Bernoulli sub-ODE method is employed to obtain the exact traveling wave solutions for our nonlinear diffusion equation. The solutions that we find are new and to our knowledge and have not been reported in the literature.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Regular traveling waves for a nonlocal diffusion equation
    Xu, Zhaoquan
    Xiao, Dongmei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (01) : 191 - 223
  • [22] EXACT SOLUTIONS OF THE NONLINEAR DIFFUSION EQUATION
    Kosov, A. A.
    Semenov, E. I.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (01) : 93 - 107
  • [23] Exact Solutions of the Nonlinear Diffusion Equation
    A. A. Kosov
    È. I. Semenov
    Siberian Mathematical Journal, 2019, 60 : 93 - 107
  • [24] Traveling waves of a generalized nonlinear Beam equation
    Esfahani, Amin
    Levandosky, Steven
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 19 (02) : 91 - 121
  • [25] Traveling waves for the nonlinear variational wave equation
    Grunert, Katrin
    Reigstad, Audun
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (05):
  • [26] Bounded traveling waves of a nonlinear Boussinesq equation
    Department of Mathematics, Yuxi Normal College, Yuxi 653100, China
    不详
    不详
    J. Nat. Sci. Hunan Norm. Univ., 2006, 3 (18-22):
  • [27] Exact traveling wave solutions to the nonlinear Schrodinger equation
    Abdoulkary, Saidou
    Mohamadou, Alidou
    Beda, Tibi
    Gambo, Betchewe
    Doka, Serge Y.
    Alim
    Mahamoudou, Aboubakar
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 109 - 115
  • [28] TRAVELING FRONT SOLUTIONS IN A NONLINEAR DIFFUSION DEGENERATE FISHER-KPP EQUATION VIA CONLEY INDEX
    El Adnani, Fatiha
    Talibi Alaoui, Hamad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2010, 35 (2D): : 179 - 188
  • [29] Diffusive and inviscid traveling waves of the Fisher equation and nonuniqueness of wave speed
    Hilhorst, Danielle
    Kim, Yong-Jung
    APPLIED MATHEMATICS LETTERS, 2016, 60 : 28 - 35
  • [30] TRAVELING WAVES OF A KINETIC TRANSPORT MODEL FOR THE KPP-FISHER EQUATION
    Cuesta, Carlota M.
    Hittmeir, Sabine
    Schmeiser, Christian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 4128 - 4146