Estimation of time-varying parameters in statistical models: An optimization approach

被引:7
|
作者
Bertsimas, D [1 ]
Gamarnik, D
Tsitsiklis, JN
机构
[1] MIT, Alfred P Sloan Sch Management, Cambridge, MA 02139 USA
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[3] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
nonparametric regression; VC dimension; convex optimization;
D O I
10.1023/A:1007586831473
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a convex optimization approach to solving the nonparametric regression estimation problem when the underlying regression function is Lipschitz continuous. This approach is based on the minimization of the sum of empirical squared errors, subject to the constraints implied by Lipschitz continuity. The resulting optimization problem has a convex objective function and linear constraints, and as a result, is efficiently solvable. The estimated function computed by this technique, is proven to convergeto the underlying regression function uniformly and almost surely, when the sample size grows to infinity, thus providing a very strong form of consistency. We also propose a convex optimization approach to the maximum likelihood estimation of unknown parameters in statistical models, where the parameters depend continuously on some observable input variables. For a number of classical distributional forms, the objective function in the underlying optimization problem is convex and the constraints are linear. These problems are, therefore, also efficiently solvable.
引用
收藏
页码:225 / 245
页数:21
相关论文
共 50 条
  • [1] Estimation of time-varying parameters in statistical models: An optimization approach
    Sloan School of Management, Operations Research Center, MIT, Cambridge, MA 02139, United States
    不详
    不详
    不详
    [J]. Mach Learn, 3 (225-245):
  • [2] Estimation of Time-Varying Parameters in Statistical Models: An Optimization Approach
    Dimitris Bertsimas
    David Gamarnik
    John N. Tsitsiklis
    [J]. Machine Learning, 1999, 35 : 225 - 245
  • [3] The Estimation Method of Time-varying Parameters of Regression Models
    Korkhin, A. S.
    [J]. JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (11) : 10 - 28
  • [4] Estimation of time-varying parameters in deterministic dynamic models
    Chen, Jianwei
    Wu, Hulin
    [J]. STATISTICA SINICA, 2008, 18 (03) : 987 - 1006
  • [5] Estimation of smooth time-varying parameters in state space models
    Zhu, Haihong
    Wu, Hulin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (04) : 813 - 832
  • [6] Statistical learning with time-varying parameters
    McGough, B
    [J]. MACROECONOMIC DYNAMICS, 2003, 7 (01) : 119 - 139
  • [7] Bayesian estimation of time-varying parameters in ordinary differential equation models with noisy time-varying covariates
    Meng, Lixin
    Zhang, Jiwei
    Zhang, Xue
    Feng, Guozhong
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (03) : 708 - 723
  • [8] ESTIMATION OF TIME-VARYING TRAFFIC PARAMETERS
    MATSUDA, J
    TAKEMORI, E
    UEDA, T
    [J]. REVIEW OF THE ELECTRICAL COMMUNICATIONS LABORATORIES, 1981, 29 (3-4): : 145 - 154
  • [9] A General Approach to Time-Varying Parameters in Pose-Graph Optimization
    Cucci, Davide Antonio
    Clausen, Philipp
    Skaloud, Jan
    Matteucci, Matteo
    [J]. 2017 EUROPEAN NAVIGATION CONFERENCE (ENC 2017), 2017, : 265 - 271
  • [10] Estimating time-varying parameters in brand choice models: A semiparametric approach
    Guhl, Daniel
    Baumgartner, Bernhard
    Kneib, Thomas
    Steiner, Winfried J.
    [J]. INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 2018, 35 (03) : 394 - 414