Estimation of time-varying parameters in statistical models: An optimization approach

被引:7
|
作者
Bertsimas, D [1 ]
Gamarnik, D
Tsitsiklis, JN
机构
[1] MIT, Alfred P Sloan Sch Management, Cambridge, MA 02139 USA
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[3] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
nonparametric regression; VC dimension; convex optimization;
D O I
10.1023/A:1007586831473
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a convex optimization approach to solving the nonparametric regression estimation problem when the underlying regression function is Lipschitz continuous. This approach is based on the minimization of the sum of empirical squared errors, subject to the constraints implied by Lipschitz continuity. The resulting optimization problem has a convex objective function and linear constraints, and as a result, is efficiently solvable. The estimated function computed by this technique, is proven to convergeto the underlying regression function uniformly and almost surely, when the sample size grows to infinity, thus providing a very strong form of consistency. We also propose a convex optimization approach to the maximum likelihood estimation of unknown parameters in statistical models, where the parameters depend continuously on some observable input variables. For a number of classical distributional forms, the objective function in the underlying optimization problem is convex and the constraints are linear. These problems are, therefore, also efficiently solvable.
引用
收藏
页码:225 / 245
页数:21
相关论文
共 50 条
  • [21] Statistical estimation of time-varying complexity in financial networks
    Aditi Rai
    Avijit Bansal
    Anindya S. Chakrabarti
    [J]. The European Physical Journal B, 2019, 92
  • [22] An IQC Approach to Robust Estimation against Perturbations of Smoothly Time-Varying Parameters
    Veenman, Joost
    Koroglu, Hakan
    Scherer, Carsten W.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 2533 - 2538
  • [23] Approach to simulation optimization of time-varying parameters system based on neural network
    Wu S.
    Zhou Y.
    Li Z.
    Liu X.
    He B.
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (02): : 472 - 480
  • [24] Statistical inference in partially time-varying coefficient models
    Li, Degui
    Chen, Jia
    Lin, Zhengyan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 995 - 1013
  • [25] The kalman filter approach for time-varying β estimation
    Gastaldi, Massimo
    Nardecchia, Annamaria
    [J]. 2003, Taylor and Francis Inc. (43):
  • [26] ESTIMATION OF TIME-VARYING MIXTURE MODELS: AN APPLICATION TO TRAFFIC ESTIMATION
    Lawlor, Sean
    Rabbat, Michael G.
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [27] Input parameters estimation from time-varying measurements
    Carapia, Gustavo Quintana
    Markovsky, Ivan
    [J]. MEASUREMENT, 2020, 153 (153)
  • [28] LMS-LIKE ESTIMATION FOR TIME-VARYING PARAMETERS
    CHEN, HF
    GUO, L
    ZHANG, JF
    [J]. ACTA MATHEMATICA SCIENTIA, 1991, 11 (03) : 327 - 340
  • [29] Adaptive Estimation of Time-Varying Parameters using DREM
    Diget, Emil Lykke
    Sloth, Christoffer
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3186 - 3191
  • [30] An Estimation Algorithm for General Linear Single Particle Tracking Models with Time-Varying Parameters
    Godoy, Boris I.
    Vickers, Nicholas A.
    Andersson, Sean B.
    [J]. MOLECULES, 2021, 26 (04):