Estimation of time-varying parameters in deterministic dynamic models

被引:2
|
作者
Chen, Jianwei [1 ]
Wu, Hulin [2 ]
机构
[1] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[2] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
asymptotic conditional bias and variance; deterministic dynamic models; differential equation models; HIV/AIDS; one-step local estimators; two-step local estimators; time-varying parameters;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop local polynomial estimation procedures to fit deterministic dynamic models with a focus on the estimation of time-varying parameters. Three local estimation methods for estimating time-varying parameters are proposed: two-step local linear estimation, two-step local quadratic estimation, and a two-step local hybrid method. Although the proposed estimation methods are applicable for general dynamic models, we establish the asymptotic properties of the proposed estimators for a linear deterministic dynamic model and show that the proposed estimators for linear dynamic models achieve the optimal convergence rate. Simulation studies reveal that the proposed two-step estimation met hods perform better than the naive one-step local estimator. An application from all AIDS clinical trial is presented to illustrate the methodologies.
引用
收藏
页码:987 / 1006
页数:20
相关论文
共 50 条