Bayesian estimation of time-varying parameters in ordinary differential equation models with noisy time-varying covariates

被引:4
|
作者
Meng, Lixin [1 ]
Zhang, Jiwei [2 ]
Zhang, Xue [3 ]
Feng, Guozhong [4 ]
机构
[1] Jilin Univ Finance & Econ, Sch Stat, Changchun, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming, Yunnan, Peoples R China
[3] Northeast Normal Univ, China Inst Rural Educ Dev, Changchun, Peoples R China
[4] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinary differential equation; Parameter estimation; Bayesian penalized B-spline; Time-varying parameter; DIC criterion; SPLINE ESTIMATION; MEASUREMENT ERROR; DYNAMIC-MODELS; COEFFICIENTS; CONSTANT;
D O I
10.1080/03610918.2019.1565584
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ordinary differential equations (ODEs) are important mathematical models in applied sciences to describe dynamic processes. The parameters involved in the models usually have specific meanings, and hence need to be estimated from the observed data. In applications, the parameters may change with time, which are called time-varying parameters. In this paper, we propose a Bayesian penalized B-spline method to estimate the time-varying parameters and initial values in ODEs. Simulation studies show that this method is more efficient than the two-stage local polynomial method. Furthermore, we introduce the DIC model selection criterion to determine the number of knots of B-splines.
引用
收藏
页码:708 / 723
页数:16
相关论文
共 50 条
  • [1] Time-varying coefficient estimation in differential equation models with noisy time-varying covariates
    Hong, Zhaoping
    Lian, Heng
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 103 (01) : 58 - 67
  • [2] Robust estimation of constant and time-varying parameters in nonlinear ordinary differential equation models
    Hu, Tao
    Qiu, Yanping
    Cui, Hengjian
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (03) : 349 - 371
  • [3] Bayesian imputation of time-varying covariates in linear mixed models
    Erler, Nicole S.
    Rizopoulos, Dimitris
    Jaddoe, Vincent W. V.
    Franco, Oscar H.
    Lesaffre, Emmanuel M. E. H.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 555 - 568
  • [4] Bayesian diffusion process models with time-varying parameters
    Kim, Yongku
    Kang, Suk Bok
    Berliner, L. Mark
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (01) : 137 - 144
  • [5] Bayesian diffusion process models with time-varying parameters
    Yongku Kim
    Suk Bok Kang
    L. Mark Berliner
    [J]. Journal of the Korean Statistical Society, 2012, 41 : 137 - 144
  • [6] The Estimation Method of Time-varying Parameters of Regression Models
    Korkhin, A. S.
    [J]. JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (11) : 10 - 28
  • [7] Estimation of time-varying parameters in deterministic dynamic models
    Chen, Jianwei
    Wu, Hulin
    [J]. STATISTICA SINICA, 2008, 18 (03) : 987 - 1006
  • [8] ESTIMATION OF TIME-VARYING TRAFFIC PARAMETERS
    MATSUDA, J
    TAKEMORI, E
    UEDA, T
    [J]. REVIEW OF THE ELECTRICAL COMMUNICATIONS LABORATORIES, 1981, 29 (3-4): : 145 - 154
  • [9] Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations
    Cao, Jiguo
    Huang, Jianhua Z.
    Wu, Hulin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (01) : 42 - 56
  • [10] Bayesian Bandwidth Estimation in Nonparametric Time-Varying Coefficient Models
    Cheng, Tingting
    Gao, Jiti
    Zhang, Xibin
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (01) : 1 - 12