An automated spectral clustering for multi-scale data

被引:13
|
作者
Afzalan, Milad [1 ]
Jazizadeh, Farrokh [1 ]
机构
[1] Virginia Tech, Charles E Via Jr Dept Civil & Environm Engn, 750 Drillfield Dr, Blacksburg, VA 24061 USA
关键词
Spectral clustering; Multi-scale data; Automated clustering; Self-tuning clustering; High-dimensional features; Time-series; Eigengap; MEAN SHIFT;
D O I
10.1016/j.neucom.2019.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering algorithms typically require a priori selection of input parameters such as the number of clusters, a scaling parameter for the affinity measure, or ranges of these values for parameter tuning. Despite efforts for automating the process of spectral clustering, the task of grouping data in multi-scale and higher dimensional spaces is yet to be explored. This study presents a spectral clustering heuristic algorithm that obviates the need for any input by estimating the parameters from the data itself. Specifically, it introduces the heuristic of iterative eigengap search with (1) global scaling and (2) local scaling. These approaches estimate the scaling parameter and implement iterative eigengap quantification along a search tree to reveal dissimilarities at different scales of a feature space and identify clusters. The performance of these approaches has been tested on various real-world datasets of power variation with multi-scale nature and gene expression. Our findings show that iterative eigengap search with a PCA-based global scaling scheme can discover different patterns with an accuracy of higher than 90% in most cases without asking for a priori input information. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 108
页数:15
相关论文
共 50 条
  • [1] ROSC: Robust Spectral Clustering on Multi-scale Data
    Li, Xiang
    Kao, Ben
    Luo, Siqiang
    Ester, Martin
    [J]. WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 157 - 166
  • [2] CAST: A Correlation-based Adaptive Spectral Clustering Algorithm on Multi-scale Data
    Li, Xiang
    Kao, Ben
    Shan, Caihua
    Yin, Dawei
    Ester, Martin
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 439 - 449
  • [3] Massive data clustering by multi-scale psychological observations
    Yang, Shusen
    Zhang, Liwen
    Xu, Chen
    Yu, Hanqiao
    Fan, Jianqing
    Xu, Zongben
    [J]. NATIONAL SCIENCE REVIEW, 2022, 9 (02)
  • [4] Massive data clustering by multi-scale psychological observations
    Shusen Yang
    Liwen Zhang
    Chen Xu
    Hanqiao Yu
    Jianqing Fan
    Zongben Xu
    [J]. National Science Review, 2022, (02) : 43 - 51
  • [5] Multi-scale clustering for gene expression profiling data
    Oba, S
    Kato, K
    Ishii, S
    [J]. BIBE 2005: 5TH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, 2005, : 210 - 217
  • [6] Group-wise parcellation of the cortex through multi-scale spectral clustering
    Parisot, Sarah
    Arslan, Salim
    Passerat-Palmbach, Jonathan
    Wells, William M., III
    Rueckert, Daniel
    [J]. NEUROIMAGE, 2016, 136 : 68 - 83
  • [7] Spectral Clustering Based on Multi-scale Stochastic Tree Image Segmentation Algorithm
    Chen, Yuantao
    Zuo, Jingwen
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SERVICE SYSTEM (CSSS), 2014, 109 : 605 - 608
  • [8] Galaxy clustering multi-scale emulation
    Dumerchat, Tyann
    Bautista, Julian
    [J]. ASTRONOMY & ASTROPHYSICS, 2024, 684
  • [9] Multi-scale structure of clustering particles
    Tsuji, Takuya
    Ito, Akihito
    Tanaka, Toshitsugu
    [J]. POWDER TECHNOLOGY, 2008, 179 (03) : 115 - 125
  • [10] Multi-scale graph clustering network
    Li, Xiulai
    Wu, Wei
    Zhang, Bin
    Peng, Xin
    [J]. INFORMATION SCIENCES, 2024, 678