An automated spectral clustering for multi-scale data

被引:13
|
作者
Afzalan, Milad [1 ]
Jazizadeh, Farrokh [1 ]
机构
[1] Virginia Tech, Charles E Via Jr Dept Civil & Environm Engn, 750 Drillfield Dr, Blacksburg, VA 24061 USA
关键词
Spectral clustering; Multi-scale data; Automated clustering; Self-tuning clustering; High-dimensional features; Time-series; Eigengap; MEAN SHIFT;
D O I
10.1016/j.neucom.2019.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering algorithms typically require a priori selection of input parameters such as the number of clusters, a scaling parameter for the affinity measure, or ranges of these values for parameter tuning. Despite efforts for automating the process of spectral clustering, the task of grouping data in multi-scale and higher dimensional spaces is yet to be explored. This study presents a spectral clustering heuristic algorithm that obviates the need for any input by estimating the parameters from the data itself. Specifically, it introduces the heuristic of iterative eigengap search with (1) global scaling and (2) local scaling. These approaches estimate the scaling parameter and implement iterative eigengap quantification along a search tree to reveal dissimilarities at different scales of a feature space and identify clusters. The performance of these approaches has been tested on various real-world datasets of power variation with multi-scale nature and gene expression. Our findings show that iterative eigengap search with a PCA-based global scaling scheme can discover different patterns with an accuracy of higher than 90% in most cases without asking for a priori input information. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 108
页数:15
相关论文
共 50 条
  • [21] Multi-scale standardized spectral mixture models
    Small, Christopher
    Milesi, Cristina
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 136 : 442 - 454
  • [22] A multi-scale seriation algorithm for clustering sparse imbalanced data: application to spike sorting
    V. Vigneron
    H. Chen
    [J]. Pattern Analysis and Applications, 2016, 19 : 885 - 903
  • [23] Multi-Scale Clustering by Building a Robust and Self Correcting Ultrametric Topology on Data Points
    Fushing, Hsieh
    Wang, Hui
    VanderWaal, Kimberly
    McCowan, Brenda
    Koehl, Patrice
    [J]. PLOS ONE, 2013, 8 (02):
  • [24] A multi-scale seriation algorithm for clustering sparse imbalanced data: application to spike sorting
    Vigneron, V.
    Chen, H.
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (04) : 885 - 903
  • [25] SPECTRAL MULTI-SCALE ANALYSIS FOR MULTI-PITCH TRACKING
    Ben Messaoud, Mohamed Anouar
    Bouzid, Aicha
    Ellouze, Noureddine
    [J]. 2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 26 - 31
  • [26] Color image segmentation using multi-scale clustering
    Kehtarnavaz, N
    Monaco, J
    Nimtschek, J
    Weeks, A
    [J]. 1998 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 1998, : 142 - 147
  • [27] Multi-scale graph attention subspace clustering network
    Wang, Tong
    Wu, Junhua
    Zhang, Zhenquan
    Zhou, Wen
    Chen, Guang
    Liu, Shasha
    [J]. NEUROCOMPUTING, 2021, 459 : 302 - 314
  • [28] Fuzzy rule generation via multi-scale clustering
    McKinney, TM
    Kehtarnavaz, N
    [J]. SMC '97 CONFERENCE PROCEEDINGS - 1997 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: CONFERENCE THEME: COMPUTATIONAL CYBERNETICS AND SIMULATION, 1997, : 3182 - 3187
  • [29] Image retrieval using multi-scale color clustering
    Kim, SH
    Woo, W
    Ho, YS
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 666 - 669
  • [30] Multi-Scale Deep Subspace Clustering With Discriminative Learning
    Wang, Jiao
    Wu, Bin
    Ren, Zhenwen
    Zhou, Yunhui
    [J]. IEEE ACCESS, 2022, 10 (91283-91293) : 91283 - 91293