An automated spectral clustering for multi-scale data

被引:13
|
作者
Afzalan, Milad [1 ]
Jazizadeh, Farrokh [1 ]
机构
[1] Virginia Tech, Charles E Via Jr Dept Civil & Environm Engn, 750 Drillfield Dr, Blacksburg, VA 24061 USA
关键词
Spectral clustering; Multi-scale data; Automated clustering; Self-tuning clustering; High-dimensional features; Time-series; Eigengap; MEAN SHIFT;
D O I
10.1016/j.neucom.2019.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering algorithms typically require a priori selection of input parameters such as the number of clusters, a scaling parameter for the affinity measure, or ranges of these values for parameter tuning. Despite efforts for automating the process of spectral clustering, the task of grouping data in multi-scale and higher dimensional spaces is yet to be explored. This study presents a spectral clustering heuristic algorithm that obviates the need for any input by estimating the parameters from the data itself. Specifically, it introduces the heuristic of iterative eigengap search with (1) global scaling and (2) local scaling. These approaches estimate the scaling parameter and implement iterative eigengap quantification along a search tree to reveal dissimilarities at different scales of a feature space and identify clusters. The performance of these approaches has been tested on various real-world datasets of power variation with multi-scale nature and gene expression. Our findings show that iterative eigengap search with a PCA-based global scaling scheme can discover different patterns with an accuracy of higher than 90% in most cases without asking for a priori input information. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 108
页数:15
相关论文
共 50 条
  • [41] Sheared Multi-Scale Weight Sharing for Multi-Spectral Superresolution
    Goldblum, Micah
    Fowl, Liam
    Czaja, Wojciech
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV, 2019, 10986
  • [42] Multi-scale RoIs selection for classifying multi-spectral images
    Seal, Ayan
    Garcia-Pedrero, Angel
    Bhattacharjee, Debotosh
    Nasipuri, Mita
    Lillo-Saavedra, Mario
    Menasalvas, Ernestina
    Gonzalo-Martin, Consuleo
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (02) : 745 - 769
  • [43] Multi-scale RoIs selection for classifying multi-spectral images
    Ayan Seal
    Angel Garcia-Pedrero
    Debotosh Bhattacharjee
    Mita Nasipuri
    Mario Lillo-Saavedra
    Ernestina Menasalvas
    Consuleo Gonzalo-Martin
    [J]. Multidimensional Systems and Signal Processing, 2020, 31 : 745 - 769
  • [44] Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data
    de la Rosa, Roberto
    Tolosana-Delgado, Raimon
    Kirsch, Moritz
    Gloaguen, Richard
    [J]. REMOTE SENSING, 2022, 14 (11)
  • [45] Automated Extraction of Rail Point Clouds by Multi-Scale Dimensional Features From MLS Data
    Han, Feng
    Liang, Tao
    Ren, Jiping
    Li, Yuan
    [J]. IEEE ACCESS, 2023, 11 : 32427 - 32436
  • [46] Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation
    Jing, Linhai
    Hu, Baoxin
    Li, Jili
    Noland, Thomas
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2012, 78 (12): : 1275 - 1284
  • [47] A Lake Selection Method Based on Dynamic Multi-scale Clustering
    Duan Peixiang
    Qian Haizhong
    He Haiwei
    XieLimin
    [J]. 2018 26TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS (GEOINFORMATICS 2018), 2018,
  • [48] Hough Array processing via Fast Multi-Scale Clustering
    Araabi, BN
    Kehtarnavaz, N
    [J]. REAL-TIME IMAGING, 2000, 6 (02) : 129 - 141
  • [49] Reasonable Price Recommendation on Airbnb Using Multi-Scale Clustering
    Li, Yang
    Pan, Quan
    Yang, Tao
    Guo, Lantian
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7038 - 7041
  • [50] Multi-scale Trajectory Clustering to Identify Corridors in Mobile Networks
    Li, Li
    Erfani, Sarah
    Chan, Chien Aun
    Leckie, Christopher
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2253 - 2256