Massive data clustering by multi-scale psychological observations

被引:0
|
作者
Shusen Yang [1 ,2 ]
Liwen Zhang [1 ]
Chen Xu [3 ]
Hanqiao Yu [1 ]
Jianqing Fan [4 ]
Zongben Xu [1 ]
机构
[1] National Engineering Laboratory of Big Data Analytics, Xi'an Jiaotong University
[2] Department of Mathematics and Statistics, University of Ottawa
[3] Center for Statistics and Machine Learning, Princeton University
[4] Industrial Artificial Intelligent Center,Pazhou Laboratory
基金
加拿大自然科学与工程研究理事会; 国家重点研发计划; 中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP311.13 []; TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1201 ; 1405 ;
摘要
Clustering is the discovery of latent group structure in data and is a fundamental problem in artificial intelligence,and a vital procedure in data-driven scientific research over all disciplines.Yet,existing methods have various limitations,especially we ak cognitive interpretability and poor computational scalability,when it comes to clustering massive datasets that are increasingly available in all domains.Here,by simulating the multi-scale cognitive observation process of humans,we design a scalable algorithm to detect clusters hierarchically hidden in massive datasets.The observation scale changes,following the Weber-Fechner law to capture the gradually emerging meaningful grouping structure.We validated our approach in real datasets with up to a billion records and 2000 dimensions,including taxi trajectories,single-cell gene expressions,face images,computer logs and audios.Our approach outperformed popular methods in usability,efficiency,effectiveness and robustness across different domains.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [1] Massive data clustering by multi-scale psychological observations
    Yang, Shusen
    Zhang, Liwen
    Xu, Chen
    Yu, Hanqiao
    Fan, Jianqing
    Xu, Zongben
    [J]. NATIONAL SCIENCE REVIEW, 2022, 9 (02)
  • [2] An automated spectral clustering for multi-scale data
    Afzalan, Milad
    Jazizadeh, Farrokh
    [J]. NEUROCOMPUTING, 2019, 347 : 94 - 108
  • [3] Multi-scale clustering for gene expression profiling data
    Oba, S
    Kato, K
    Ishii, S
    [J]. BIBE 2005: 5TH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, 2005, : 210 - 217
  • [4] ROSC: Robust Spectral Clustering on Multi-scale Data
    Li, Xiang
    Kao, Ben
    Luo, Siqiang
    Ester, Martin
    [J]. WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 157 - 166
  • [5] Construction of multi-scale grid for massive land survey data
    Zhang, Jia
    Wang, Xiulian
    Zhang, Xiaotong
    Bai, Xiaofei
    Chen, Qiang
    [J]. 2020 2ND INTERNATIONAL CONFERENCE ON GEOSCIENCE AND ENVIRONMENTAL CHEMISTRY (ICGEC 2020), 2020, 206
  • [6] Graph mapping: Multi-scale community visualization of massive graph data
    Jonker, David
    Langevin, Scott
    Giesbrecht, David
    Crouch, Michael
    Kronenfeld, Nathan
    [J]. INFORMATION VISUALIZATION, 2017, 16 (03) : 190 - 204
  • [7] Multi-Scale Massive Points Fast Clustering Based on Hierarchical Density Spanning Tree
    Chen, Song
    Zhang, Fuhao
    Zhang, Zhiran
    Yu, Siyi
    Qiu, Agen
    Liu, Shangqin
    Zhao, Xizhi
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (01)
  • [8] Galaxy clustering multi-scale emulation
    Dumerchat, Tyann
    Bautista, Julian
    [J]. ASTRONOMY & ASTROPHYSICS, 2024, 684
  • [9] Multi-scale structure of clustering particles
    Tsuji, Takuya
    Ito, Akihito
    Tanaka, Toshitsugu
    [J]. POWDER TECHNOLOGY, 2008, 179 (03) : 115 - 125
  • [10] Multi-scale graph clustering network
    Li, Xiulai
    Wu, Wei
    Zhang, Bin
    Peng, Xin
    [J]. INFORMATION SCIENCES, 2024, 678