Scalable Inference of Sparsely-changing Gaussian Markov Random Fields

被引:0
|
作者
Fattahi, Salar [1 ]
Gomez, Andres [2 ]
机构
[1] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
[2] Univ Southern Calif, Dept Ind & Syst Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
DECAY BOUNDS; COVARIANCE; ALGORITHM; MATRICES; INVERSE; RATES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of inferring time-varying Gaussian Markov random fields, where the underlying graphical model is both sparse and changes sparsely over time. Most of the existing methods for the inference of time-varying Markov random fields (MRFs) rely on the regularized maximum likelihood estimation (MLE), that typically suffer from weak statistical guarantees and high computational time. Instead, we introduce a new class of constrained optimization problems for the inference of sparsely-changing Gaussian MRFs (GMRFs). The proposed optimization problem is formulated based on the exact l(0) regularization, and can be solved in near-linear time and memory. Moreover, we show that the proposed estimator enjoys a provably small estimation error. We derive sharp statistical guarantees in the high-dimensional regime, showing that such problems can be learned with as few as one sample per time period. Our proposed method is extremely efficient in practice: it can accurately estimate sparsely-changing GMRFs with more than 500 million variables in less than one hour.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On Gaussian Markov random fields and Bayesian disease mapping
    MacNab, Ying C.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2011, 20 (01) : 49 - 68
  • [22] Region selection in Markov random fields: Gaussian case
    Soloveychik, Ilya
    Tarokh, Vahid
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [23] Bayesian reference analysis for Gaussian Markov random fields
    Ferreira, Marco A. R.
    De Oliveira, Victor
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (04) : 789 - 812
  • [24] Composite Likelihood Inference for Multivariate Gaussian Random Fields
    Bevilacqua, Moreno
    Alegria, Alfredo
    Velandia, Daira
    Porcu, Emilio
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2016, 21 (03) : 448 - 469
  • [25] Another look at conditionally Gaussian Markov random fields
    Lavine, M
    BAYESIAN STATISTICS 6, 1999, : 371 - 387
  • [26] Composite Likelihood Inference for Multivariate Gaussian Random Fields
    Moreno Bevilacqua
    Alfredo Alegria
    Daira Velandia
    Emilio Porcu
    Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 448 - 469
  • [27] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    Advances in Data Analysis and Classification, 2008, 2 (1)
  • [28] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [29] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [30] Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields
    Wu, H.
    Noe, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1659 - 1667