Ehrhart polynomial roots of reflexive polytopes

被引:0
|
作者
Hegedus, Gabor [1 ]
Higashitani, Akihiro [2 ]
Kasprzyk, Alexander [3 ]
机构
[1] Obuda Univ, Antal Bejczy Ctr Intelligent Robot, H-1032 Budapest, Hungary
[2] Kyoto Sangyo Univ, Grad Sch Sci, Dept Math, Kyoto 6038555, Japan
[3] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 01期
关键词
GEOMETRIE DIOPHANTIENNE; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent work has focused on the roots z is an element of C of the Ehrhart polynomial of a lattice polytope P. The case when Re(z) = -1/2 is of particular interest: these polytopes satisfy Golyshev's "canonical line hypothesis". We characterise such polytopes when dim(P) <= 7. We also consider the "half-strip condition", where all roots z satisfy -dim(P)/2 <= Re(z) <= dim(P)/2 - 1, and show that this holds for any reflexive polytope with dim(P) <= 5. We give an example of a 10-dimensional reflexive polytope which violates the half-strip condition, thus improving on an example by Ohsugi-Shibata in dimension 34.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] An Ehrhart series formula for reflexive polytopes
    Braun, Benjamin
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [2] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998
  • [3] Interlacing Ehrhart polynomials of reflexive polytopes
    Akihiro Higashitani
    Mario Kummer
    Mateusz Michałek
    [J]. Selecta Mathematica, 2017, 23 : 2977 - 2998
  • [4] Ehrhart Series, Unimodality, and Integrally Closed Reflexive Polytopes
    Braun, Benjamin
    Davis, Robert
    [J]. ANNALS OF COMBINATORICS, 2016, 20 (04) : 705 - 717
  • [5] Ehrhart Series, Unimodality, and Integrally Closed Reflexive Polytopes
    Benjamin Braun
    Robert Davis
    [J]. Annals of Combinatorics, 2016, 20 : 705 - 717
  • [6] Lattice polytopes, Hecke operators, and the Ehrhart polynomial
    Gunnells, Paul E.
    Villegas, Fernando Rodriguez
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2007, 13 (02): : 253 - 276
  • [7] The General Formula for the Ehrhart Polynomial of Polytopes with Applications
    Sadiq, Fatema A.
    Salman, Shatha A.
    Sabri, Raghad, I
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1583 - 1590
  • [8] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Hegedues, Gabor
    Kasprzyk, Alexander M.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 488 - 499
  • [9] Lattice polytopes, Hecke operators, and the Ehrhart polynomial
    Paul E. Gunnells
    Fernando Rodriguez Villegas
    [J]. Selecta Mathematica, 2007, 13
  • [10] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Gábor Hegedüs
    Alexander M. Kasprzyk
    [J]. Discrete & Computational Geometry, 2011, 46 : 488 - 499