Ehrhart polynomial roots of reflexive polytopes

被引:0
|
作者
Hegedus, Gabor [1 ]
Higashitani, Akihiro [2 ]
Kasprzyk, Alexander [3 ]
机构
[1] Obuda Univ, Antal Bejczy Ctr Intelligent Robot, H-1032 Budapest, Hungary
[2] Kyoto Sangyo Univ, Grad Sch Sci, Dept Math, Kyoto 6038555, Japan
[3] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 01期
关键词
GEOMETRIE DIOPHANTIENNE; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent work has focused on the roots z is an element of C of the Ehrhart polynomial of a lattice polytope P. The case when Re(z) = -1/2 is of particular interest: these polytopes satisfy Golyshev's "canonical line hypothesis". We characterise such polytopes when dim(P) <= 7. We also consider the "half-strip condition", where all roots z satisfy -dim(P)/2 <= Re(z) <= dim(P)/2 - 1, and show that this holds for any reflexive polytope with dim(P) <= 5. We give an example of a 10-dimensional reflexive polytope which violates the half-strip condition, thus improving on an example by Ohsugi-Shibata in dimension 34.
引用
收藏
页数:27
相关论文
共 50 条