The General Formula for the Ehrhart Polynomial of Polytopes with Applications

被引:0
|
作者
Sadiq, Fatema A. [1 ]
Salman, Shatha A. [1 ]
Sabri, Raghad, I [1 ]
机构
[1] Univ Technol Baghdad, Fac Appl Sci, Math & Comp Applicat, Baghdad, Iraq
关键词
Cyclic Polytopes; Ehrhart Polynomial; Product;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Polytopes have shown wide applications in a lot of situations. For example, a cyclic polytope is very important in different areas of science like solutions to extremum problems (the Upper Bound Conjecture). Polytopes serve as bases for diverse constructions (from triangulations to bimatrix games). In addition, we give the general form for the product of simplex polytopes and an algorithm for these computations.
引用
收藏
页码:1583 / 1590
页数:8
相关论文
共 50 条
  • [1] An Ehrhart series formula for reflexive polytopes
    Braun, Benjamin
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [2] Ehrhart polynomial roots of reflexive polytopes
    Hegedus, Gabor
    Higashitani, Akihiro
    Kasprzyk, Alexander
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [3] Lattice polytopes, Hecke operators, and the Ehrhart polynomial
    Gunnells, Paul E.
    Villegas, Fernando Rodriguez
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2007, 13 (02): : 253 - 276
  • [4] Lattice polytopes, Hecke operators, and the Ehrhart polynomial
    Paul E. Gunnells
    Fernando Rodriguez Villegas
    [J]. Selecta Mathematica, 2007, 13
  • [5] On Lattice Path Matroid Polytopes: Integer Points and Ehrhart Polynomial
    Knauer, Kolja
    Martinez-Sandoval, Leonardo
    Alfonsin, Jorge Luis Ramirez
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (03) : 698 - 719
  • [6] On Lattice Path Matroid Polytopes: Integer Points and Ehrhart Polynomial
    Kolja Knauer
    Leonardo Martínez-Sandoval
    Jorge Luis Ramírez Alfonsín
    [J]. Discrete & Computational Geometry, 2018, 60 : 698 - 719
  • [7] Chainlink Polytopes and Ehrhart Equivalence
    Oguz, Ezgi Kantarci
    Ozel, Cem Yalim
    Ravichandran, Mohan
    [J]. ANNALS OF COMBINATORICS, 2024,
  • [8] Ehrhart polynomials of cyclic polytopes
    Liu, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [9] Smooth Fano Polytopes Whose Ehrhart Polynomial Has a Root with Large Real Part
    Hidefumi Ohsugi
    Kazuki Shibata
    [J]. Discrete & Computational Geometry, 2012, 47 : 624 - 628
  • [10] AN APPLICATION OF THE COMBINATORIAL RIEMANN-ROCH THEOREM TO THE EHRHART POLYNOMIAL OF INTEGRAL POLYTOPES IN RD
    KANTOR, JM
    KHOVANSKII, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (05): : 501 - 507