Normalized doubly coprime factorizations for infinite-dimensional linear systems

被引:18
|
作者
Curtain, RF [1 ]
Opmeer, MR [1 ]
机构
[1] Univ Groningen, Inst Math, NL-9700 AV Groningen, Netherlands
关键词
infinite-dimensional linear systems; coprime factorizations; regular linear systems; stability; stabilizability; Riccati equations; Lyapunov equations; Bezout equations; Nehari problem; well-posed linear systems; operator nodes;
D O I
10.1007/s00498-005-0158-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We obtain explicit formulas for normalized doubly coprime factorizations of the transfer functions of the following class of linear systems: the input and output operators are vector-valued, but bounded, and the system is input and output stabilizable. Moreover, we give explicit formulas for the Bezout factors. Using a reciprocal approach, we extend our results to a larger class where the input and output operators are allowed to be unbounded. This class is much larger than the class of well-posed linear systems.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [21] Optimizability and estimatability for infinite-dimensional linear systems
    Weiss, G
    Rebarber, R
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) : 1204 - 1232
  • [22] On the stability of infinite-dimensional linear inequality systems
    López, MA
    Mira, JA
    Torregrosa, G
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (9-10) : 1065 - 1077
  • [23] Adaptive identification of linear infinite-dimensional systems
    Chattopadhyay, Sudipta
    Sukumar, Srikant
    Natarajan, Vivek
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2024,
  • [24] On Observability and Stability in Infinite-Dimensional Linear Systems
    Fuhrmann, P. A.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 12 (02) : 173 - 181
  • [25] Infinite-dimensional linear dynamical systems with chaoticity
    Fu, XC
    Duan, J
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1999, 9 (02) : 197 - 211
  • [26] Infinite-dimensional linear dynamical systems with chaoticity
    Fu, X.-C.
    Duan, J.
    [J]. Journal of Nonlinear Science, 9 (02): : 197 - 211
  • [27] INFINITE-DIMENSIONAL LINEAR-SYSTEMS THEORY
    PRITCHARD, AJ
    [J]. PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1979, 126 (06): : 641 - 648
  • [28] Infinite-Dimensional Linear Dynamical Systems with Chaoticity
    X. -C. Fu
    J. Duan
    [J]. Journal of Nonlinear Science, 1999, 9 : 197 - 211
  • [29] Positive Stabilization of Infinite-dimensional Linear Systems
    Abouzaid, B.
    Winkin, J. J.
    Wertz, V.
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 845 - 850
  • [30] Stabilization for Infinite-Dimensional Switched Linear Systems
    Zheng, Guojie
    Xiong, Jiandong
    Yu, Xin
    Xu, Chao
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) : 5456 - 5463